Maximal Lattice-Free Polyhedra in Mixed-Integer Cutting Plane Theory

Download Maximal Lattice-Free Polyhedra in Mixed-Integer Cutting Plane Theory PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736939272
Total Pages : 181 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Maximal Lattice-Free Polyhedra in Mixed-Integer Cutting Plane Theory by : Christian Wagner

Download or read book Maximal Lattice-Free Polyhedra in Mixed-Integer Cutting Plane Theory written by Christian Wagner and published by Cuvillier Verlag. This book was released on 2011-11-15 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis deals with the generation, evaluation, and analysis of cutting planes for mixed-integer linear programs (MILP's). Such optimization problems involve finitely many variables, some of which are required to be integer. The aim is to maximize or minimize a linear objective function over a set of finitely many linear equations and inequalities. Many industrial problems can be formulated as MILP's. The presence of both, discrete and continuous variables, makes it difficult to solve MILP's algorithmically. The currently available algorithms fail to solve many real-life problems in acceptable time or can only provide heuristic solutions. As a consequence, there is an ongoing interest in novel solution techniques. A standard approach to solve MILP's is to apply cutting plane methods. Here, the underlying MILP is used to construct a sequence of linear programs whose formulations are improved by successively adding linear constraints – so-called cutting planes – until one of the linear programs has an optimal solution which satisfies the integrality conditions on the integer constrained variables. For many combinatorial problems, it is possible to immediately deduce several families of cutting planes by exploiting the inherent combinatorial structure of the problem. However, for general MILP's, no structural properties can be used. The generation of cutting planes must rather be based on the objective function and the given, unstructured set of linear equations and inequalities. On the one hand, this makes the derivation of strong cutting planes for general MILP's more difficult than the derivation of cutting planes for structured problems. On the other hand, for this very reason, the analysis of cutting plane generation for general MILP's becomes mathematically interesting. This thesis presents an approach to generate cutting planes for a general MILP. The cutting planes are obtained from lattice-free polyhedra, that is polyhedra without interior integer point. The point of departure is an optimal solution of the linear programming relaxation of the underlying MILP. By considering multiple rows of an associated simplex tableau, a further relaxation is derived. The first part of this thesis is dedicated to the analysis of this relaxation and it is shown how cutting planes for the general MILP can be deduced from the considered relaxation. It turns out that the generated cutting planes have a geometric interpretation in the space of the discrete variables. In particular, it is shown that the strongest cutting planes which can be derived from the considered relaxation correspond to maximal lattice-free polyhedra. As a result, problems on cutting planes are transferable into problems on maximal lattice-free polyhedra. The second part of this thesis addresses the evaluation of the generated cutting planes. It is shown that the cutting planes which are important, are at the same time the cutting planes which are difficult to derive in the sense that they correspond to highly complex maximal lattice-free polyhedra. In addition, it is shown that under certain assumptions on the underlying system of linear equations and inequalities, the important cutting planes can be approximated with cutting planes which correspond to less complex maximal lattice-free polyhedra. A probabilistic model is used to complement the analysis. Moreover, a geometric interpretation of the results is given. The third part of this thesis focuses on the analysis of lattice-free polyhedra. In particular, the class of lattice-free integral polyhedra is investigated, a class which is important within a cutting plane framework. Two different notions of maximality are introduced. It is distinguished into the class of lattice-free integral polyhedra which are not properly contained in another lattice-free integral polyhedron, and the class of lattice-free integral polyhedra which are not properly contained in another lattice-free convex set. Both classes are analyzed, especially with respect to the properties of their representatives and the relation between the two classes. It is shown that both classes are of large cardinality and that they contain very large elements. For the second as well as the third part of this thesis, statements about two-dimensional lattice-free convex sets are needed. For that reason, the fourth part of this thesis is devoted to the derivation of these results.

Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Download Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814462934
Total Pages : 4137 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures by : Rajendra Bhatia

Download or read book Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures written by Rajendra Bhatia and published by World Scientific. This book was released on 2011-06-06 with total page 4137 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.

Download  PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 :
Total Pages : 1131 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis by :

Download or read book written by and published by World Scientific. This book was released on with total page 1131 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Facets of Combinatorial Optimization

Download Facets of Combinatorial Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642381898
Total Pages : 510 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Facets of Combinatorial Optimization by : Michael Jünger

Download or read book Facets of Combinatorial Optimization written by Michael Jünger and published by Springer Science & Business Media. This book was released on 2013-07-03 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martin Grötschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grötschel’s doctoral descendant tree 1983–2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grötschel by the editors (Part I), a contribution by his very special “predecessor” Manfred Padberg on “Facets and Rank of Integer Polyhedra” (Part II), and the doctoral descendant tree 1983–2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the “scientific facets” of Martin Grötschel who has set standards in theory, computation and applications.

INFORMS Annual Meeting

Download INFORMS Annual Meeting PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 644 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis INFORMS Annual Meeting by : Institute for Operations Research and the Management Sciences. National Meeting

Download or read book INFORMS Annual Meeting written by Institute for Operations Research and the Management Sciences. National Meeting and published by . This book was released on 2009 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Integer Programming

Download Integer Programming PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331911008X
Total Pages : 466 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Integer Programming by : Michele Conforti

Download or read book Integer Programming written by Michele Conforti and published by Springer. This book was released on 2014-11-15 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

Theory of Linear and Integer Programming

Download Theory of Linear and Integer Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471982326
Total Pages : 488 pages
Book Rating : 4.9/5 (823 download)

DOWNLOAD NOW!


Book Synopsis Theory of Linear and Integer Programming by : Alexander Schrijver

Download or read book Theory of Linear and Integer Programming written by Alexander Schrijver and published by John Wiley & Sons. This book was released on 1998-06-11 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Als Ergänzung zu den mehr praxisorientierten Büchern, die auf dem Gebiet der linearen und Integerprogrammierung bereits erschienen sind, beschreibt dieses Werk die zugrunde liegende Theorie und gibt einen Überblick über wichtige Algorithmen. Der Autor diskutiert auch Anwendungen auf die kombinatorische Optimierung; neben einer ausführlichen Bibliographie finden sich umfangreiche historische Anmerkungen.

Mixed Integer Nonlinear Programming

Download Mixed Integer Nonlinear Programming PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461419271
Total Pages : 687 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mixed Integer Nonlinear Programming by : Jon Lee

Download or read book Mixed Integer Nonlinear Programming written by Jon Lee and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Combinatorial Optimization

Download Combinatorial Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898714818
Total Pages : 140 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Optimization by : Gerard Cornuejols

Download or read book Combinatorial Optimization written by Gerard Cornuejols and published by SIAM. This book was released on 2001-01-01 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and elegant proofs of classical results and makes difficult results accessible.

Applied Integer Programming

Download Applied Integer Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470373067
Total Pages : 489 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Applied Integer Programming by : Der-San Chen

Download or read book Applied Integer Programming written by Der-San Chen and published by John Wiley & Sons. This book was released on 2010-01-12 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.

50 Years of Integer Programming 1958-2008

Download 50 Years of Integer Programming 1958-2008 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540682791
Total Pages : 803 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis 50 Years of Integer Programming 1958-2008 by : Michael Jünger

Download or read book 50 Years of Integer Programming 1958-2008 written by Michael Jünger and published by Springer Science & Business Media. This book was released on 2009-11-06 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.

Convex Optimization & Euclidean Distance Geometry

Download Convex Optimization & Euclidean Distance Geometry PDF Online Free

Author :
Publisher : Meboo Publishing USA
ISBN 13 : 0976401304
Total Pages : 776 pages
Book Rating : 4.9/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization & Euclidean Distance Geometry by : Jon Dattorro

Download or read book Convex Optimization & Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

Polyhedral Computation

Download Polyhedral Computation PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470417741
Total Pages : 147 pages
Book Rating : 4.4/5 (177 download)

DOWNLOAD NOW!


Book Synopsis Polyhedral Computation by :

Download or read book Polyhedral Computation written by and published by . This book was released on 2009 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many polytopes of practical interest have enormous output complexity and are often highly degenerate, posing severe difficulties for known general-purpose algorithms. They are, however, highly structured, and attention has turned to exploiting this structure, particularly symmetry. Initial applications of this approach have permitted computations previously far out of reach, but much remains to be understood and validated experimentally. The papers in this volume give a good snapshot of the ideas discussed at a Workshop on Polyhedral Computation held at the CRM in Montréal in October 2006 and,

Computing the Continuous Discretely

Download Computing the Continuous Discretely PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493929690
Total Pages : 295 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Computing the Continuous Discretely by : Matthias Beck

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

Combinatorial Reciprocity Theorems

Download Combinatorial Reciprocity Theorems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147042200X
Total Pages : 325 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Reciprocity Theorems by : Matthias Beck

Download or read book Combinatorial Reciprocity Theorems written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.

The Mathematics of Chip-Firing

Download The Mathematics of Chip-Firing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135180099X
Total Pages : 296 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis The Mathematics of Chip-Firing by : Caroline J. Klivans

Download or read book The Mathematics of Chip-Firing written by Caroline J. Klivans and published by CRC Press. This book was released on 2018-11-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.

Geometric Algorithms and Combinatorial Optimization

Download Geometric Algorithms and Combinatorial Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642978819
Total Pages : 374 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algorithms and Combinatorial Optimization by : Martin Grötschel

Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.