Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Topics In Imaging
Download Mathematical Topics In Imaging full books in PDF, epub, and Kindle. Read online Mathematical Topics In Imaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to the Mathematics of Medical Imaging by : Charles L. Epstein
Download or read book Introduction to the Mathematics of Medical Imaging written by Charles L. Epstein and published by SIAM. This book was released on 2008-01-01 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.
Book Synopsis The Mathematics of Medical Imaging by : Timothy G. Feeman
Download or read book The Mathematics of Medical Imaging written by Timothy G. Feeman and published by Springer Science & Business Media. This book was released on 2010 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging is a major part of twenty-first century health care. This introduction explores the mathematical aspects of imaging in medicine to explain approximation methods in addition to computer implementation of inversion algorithms.
Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Book Synopsis Mathematics and Computer Science in Medical Imaging by : Max A. Viergever
Download or read book Mathematics and Computer Science in Medical Imaging written by Max A. Viergever and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging is an important and rapidly expanding area in medical science. Many of the methods employed are essentially digital, for example computerized tomography, and the subject has become increasingly influenced by develop ments in both mathematics and computer science. The mathematical problems have been the concern of a relatively small group of scientists, consisting mainly of applied mathematicians and theoretical physicists. Their efforts have led to workable algorithms for most imaging modalities. However, neither the fundamentals, nor the limitations and disadvantages of these algorithms are known to a sufficient degree to the physicists, engineers and physicians trying to implement these methods. It seems both timely and important to try to bridge this gap. This book summarizes the proceedings of a NATO Advanced Study Institute, on these topics, that was held in the mountains of Tuscany for two weeks in the late summer of 1986. At another (quite different) earlier meeting on medical imaging, the authors noted that each of the speakers had given, there, a long introduction in their general area, stated that they did not have time to discuss the details of the new work, but proceeded to show lots of clinical results, while excluding any mathematics associated with the area.
Book Synopsis Mathematics and Computation in Imaging Science and Information Processing by : Say Song Goh
Download or read book Mathematics and Computation in Imaging Science and Information Processing written by Say Song Goh and published by World Scientific. This book was released on 2007 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The explosion of data arising from rapid advances in communication, sensing and computational power has concentrated research effort on more advanced techniques for the representation, processing, analysis and interpretation of data sets. In view of these exciting developments, the program OC Mathematics and Computation in Imaging Science and Information ProcessingOCO was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004 to promote and facilitate multidisciplinary research in the area. As part of the program, a series of tutorial lectures were conducted by international experts on a wide variety of topics in mathematical image, signal and information processing. This compiled volume contains survey articles by the tutorial speakers, all specialists in their respective areas. They collectively provide graduate students and researchers new to the field a unique and valuable introduction to a range of important topics at the frontiers of current research. Sample Chapter(s). Foreword (46 KB). Chapter 1: Subdivision on Arbitrary Meshes: Algorithms and Theory (771 KB). Contents: Subdivision on Arbitrary Meshes: Algorithms and Theory (D Zorin); High Order Numerical Methods for Time Dependent Hamilton-Jacobi Equations (C-W Shu); Theory and Computation of Variational Image Deblurring (T F Chan & J Shen); Data Hiding OCo Theory and Algorithms (P Moulin & R Koetter); Image Steganography and Steganalysis: Concepts and Practice (M Kharrazi et al.); The Apriori Algorithm OCo A Tutorial (M Hegland). Readership: Graduate students and researchers in mathematical image, signal and information processing."
Book Synopsis Mathematical Foundations of Imaging, Tomography and Wavefield Inversion by : Anthony J. Devaney
Download or read book Mathematical Foundations of Imaging, Tomography and Wavefield Inversion written by Anthony J. Devaney and published by Cambridge University Press. This book was released on 2012-06-21 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.
Book Synopsis Mathematics of Digital Images by : S. G. Hoggar
Download or read book Mathematics of Digital Images written by S. G. Hoggar and published by Cambridge University Press. This book was released on 2006-09-14 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compression, restoration and recognition are three of the key components of digital imaging. The mathematics needed to understand and carry out all these components are explained here in a style that is at once rigorous and practical with many worked examples, exercises with solutions, pseudocode, and sample calculations on images. The introduction lists fast tracks to special topics such as Principal Component Analysis, and ways into and through the book, which abounds with illustrations. The first part describes plane geometry and pattern-generating symmetries, along with some on 3D rotation and reflection matrices. Subsequent chapters cover vectors, matrices and probability. These are applied to simulation, Bayesian methods, Shannon's information theory, compression, filtering and tomography. The book will be suited for advanced courses or for self-study. It will appeal to all those working in biomedical imaging and diagnosis, computer graphics, machine vision, remote sensing, image processing and information theory and its applications.
Book Synopsis Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion by : N. Bleistein
Download or read book Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion written by N. Bleistein and published by Springer Science & Business Media. This book was released on 2000-12-15 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than 80 years, the oil and gas industry has used seismic methods to construct images and determine physical characteristics of rocks that can yield information about oil and gas bearing structures in the earth. This book presents the different seismic data processing methods, also known as seismic "migration," in a unified mathematical way. The book serves as a bridge between the applied math and geophysics communities by presenting geophysicists with a practical introduction to advanced engineering mathematics, while presenting mathematicians with a window into the world of the mathematically sophisticated geophysicist.
Book Synopsis Mathematics in Image Processing by : Hong-Kai Zhao
Download or read book Mathematics in Image Processing written by Hong-Kai Zhao and published by American Mathematical Soc.. This book was released on 2013-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theme of the 2010 PCMI Summer School was Mathematics in Image Processing in a broad sense, including mathematical theory, analysis, computation algorithms and applications. In image processing, information needs to be processed, extracted and analyzed from visual content, such as photographs or videos. These demands include standard tasks such as compression and denoising, as well as high-level understanding and analysis, such as recognition and classification. Centered on the theme of mathematics in image processing, the summer school covered quite a wide spectrum of topics in this field. The summer school is particularly timely and exciting due to the very recent advances and developments in the mathematical theory and computational methods for sparse representation. This volume collects three self-contained lecture series. The topics are multi-resolution based wavelet frames and applications to image processing, sparse and redundant representation modeling of images and simulation of elasticity, biomechanics, and virtual surgery. Recent advances in image processing, compressed sensing and sparse representation are discussed.
Book Synopsis Mathematical Methods in Image Processing and Inverse Problems by : Xue-Cheng Tai
Download or read book Mathematical Methods in Image Processing and Inverse Problems written by Xue-Cheng Tai and published by Springer Nature. This book was released on 2021-09-25 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains eleven original and survey scientific research articles arose from presentations given by invited speakers at International Workshop on Image Processing and Inverse Problems, held in Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book was dedicated to Professor Raymond Chan on the occasion of his 60th birthday. The contents of the book cover topics including image reconstruction, image segmentation, image registration, inverse problems and so on. Deep learning, PDE, statistical theory based research methods and techniques were discussed. The state-of-the-art developments on mathematical analysis, advanced modeling, efficient algorithm and applications were presented. The collected papers in this book also give new research trends in deep learning and optimization for imaging science. It should be a good reference for researchers working on related problems, as well as for researchers working on computer vision and visualization, inverse problems, image processing and medical imaging.
Book Synopsis Mathematical Methods for Signal and Image Analysis and Representation by : Luc Florack
Download or read book Mathematical Methods for Signal and Image Analysis and Representation written by Luc Florack and published by Springer Science & Business Media. This book was released on 2012-01-13 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
Book Synopsis Mathematical Methods in Image Reconstruction by : Frank Natterer
Download or read book Mathematical Methods in Image Reconstruction written by Frank Natterer and published by SIAM. This book was released on 2001-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a superior understanding of the mathematical principles behind imaging.
Book Synopsis Mathematical Methods in Elasticity Imaging by : Habib Ammari
Download or read book Mathematical Methods in Elasticity Imaging written by Habib Ammari and published by Princeton University Press. This book was released on 2015-04-06 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative–based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
Book Synopsis Mathematical Image Processing by : Kristian Bredies
Download or read book Mathematical Image Processing written by Kristian Bredies and published by Springer. This book was released on 2019-02-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
Book Synopsis Mathematical and Statistical Methods for Multistatic Imaging by : Habib Ammari
Download or read book Mathematical and Statistical Methods for Multistatic Imaging written by Habib Ammari and published by Springer. This book was released on 2013-11-29 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers recent mathematical, numerical, and statistical approaches for multistatic imaging of targets with waves at single or multiple frequencies. The waves can be acoustic, elastic or electromagnetic. They are generated by point sources on a transmitter array and measured on a receiver array. An important problem in multistatic imaging is to quantify and understand the trade-offs between data size, computational complexity, signal-to-noise ratio, and resolution. Another fundamental problem is to have a shape representation well suited to solving target imaging problems from multistatic data. In this book the trade-off between resolution and stability when the data are noisy is addressed. Efficient imaging algorithms are provided and their resolution and stability with respect to noise in the measurements analyzed. It also shows that high-order polarization tensors provide an accurate representation of the target. Moreover, a dictionary-matching technique based on new invariants for the generalized polarization tensors is introduced. Matlab codes for the main algorithms described in this book are provided. Numerical illustrations using these codes in order to highlight the performance and show the limitations of numerical approaches for multistatic imaging are presented.
Book Synopsis Mathematical Morphology and Its Applications to Image Processing by : Jean Serra
Download or read book Mathematical Morphology and Its Applications to Image Processing written by Jean Serra and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.
Download or read book Mathematics++ written by Ida Kantor and published by American Mathematical Soc.. This book was released on 2015-08-27 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications--some quite surprising--in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.