Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Manifold Learning Theory And Applications
Download Manifold Learning Theory And Applications full books in PDF, epub, and Kindle. Read online Manifold Learning Theory And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Manifold Learning Theory and Applications by : Yunqian Ma
Download or read book Manifold Learning Theory and Applications written by Yunqian Ma and published by CRC Press. This book was released on 2011-12-20 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trained to extract actionable information from large volumes of high-dimensional data, engineers and scientists often have trouble isolating meaningful low-dimensional structures hidden in their high-dimensional observations. Manifold learning, a groundbreaking technique designed to tackle these issues of dimensionality reduction, finds widespread
Book Synopsis Machine Learning for Audio, Image and Video Analysis by : Francesco Camastra
Download or read book Machine Learning for Audio, Image and Video Analysis written by Francesco Camastra and published by Springer. This book was released on 2015-07-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Book Synopsis Modern Multivariate Statistical Techniques by : Alan J. Izenman
Download or read book Modern Multivariate Statistical Techniques written by Alan J. Izenman and published by Springer Science & Business Media. This book was released on 2009-03-02 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Book Synopsis Graph Embedding for Pattern Analysis by : Yun Fu
Download or read book Graph Embedding for Pattern Analysis written by Yun Fu and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Book Synopsis Information Geometry and Its Applications by : Shun-ichi Amari
Download or read book Information Geometry and Its Applications written by Shun-ichi Amari and published by Springer. This book was released on 2016-02-02 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
Book Synopsis Calculus on Manifolds by : Michael Spivak
Download or read book Calculus on Manifolds written by Michael Spivak and published by Westview Press. This book was released on 1965 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Book Synopsis Modern Multidimensional Scaling by : Ingwer Borg
Download or read book Modern Multidimensional Scaling written by Ingwer Borg and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices for a set of countries. MDS attempts to model such data as distances among points in a geometric space. The main reason for doing this is that one wants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of geometry into which one wants to map the data, the mapping function, the algorithms used to find an optimal data representation, the treatment of statistical error in the models, or the possibility to represent not just one but several similarity matrices at the same time. Other facets relate to the different purposes for which MDS has been used, to various ways of looking at or "interpreting" an MDS representation, or to differences in the data required for the particular models. In this book, we give a fairly comprehensive presentation of MDS. For the reader with applied interests only, the first six chapters of Part I should be sufficient. They explain the basic notions of ordinary MDS, with an emphasis on how MDS can be helpful in answering substantive questions.
Book Synopsis Machine Learning: Theory and Applications by :
Download or read book Machine Learning: Theory and Applications written by and published by Newnes. This book was released on 2013-05-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques
Book Synopsis Computational Methods for Deep Learning by : Wei Qi Yan
Download or read book Computational Methods for Deep Learning written by Wei Qi Yan and published by Springer Nature. This book was released on 2020-12-04 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.
Book Synopsis Evolutionary Global Optimization, Manifolds and Applications by : Hime Aguiar e Oliveira Junior
Download or read book Evolutionary Global Optimization, Manifolds and Applications written by Hime Aguiar e Oliveira Junior and published by Springer. This book was released on 2015-12-09 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory. Many necessary definitions and fundamental results are provided, with the formal mathematical requirements limited to a minimum, while the focus is kept firmly on continuous problems. The book offers a valuable resource for students, researchers and practitioners. It is suitable for university courses on optimization and for self-study.
Book Synopsis Scala for Machine Learning by : Patrick R. Nicolas
Download or read book Scala for Machine Learning written by Patrick R. Nicolas and published by Packt Publishing Ltd. This book was released on 2017-09-26 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Scala and Machine Learning to study and construct systems that can learn from data About This Book Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala Take your expertise in Scala programming to the next level by creating and customizing AI applications Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style Who This Book Is For If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book! What You Will Learn Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Write your own classification, clustering, or evolutionary algorithm Perform relative performance tuning and evaluation of Spark Master probabilistic models for sequential data Experiment with advanced techniques such as regularization and kernelization Dive into neural networks and some deep learning architecture Apply some basic multiarm-bandit algorithms Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to a technical analysis of financial markets In Detail The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala. Style and approach This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.
Book Synopsis Open Problems in Spectral Dimensionality Reduction by : Harry Strange
Download or read book Open Problems in Spectral Dimensionality Reduction written by Harry Strange and published by Springer Science & Business Media. This book was released on 2014-01-07 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last few years have seen a great increase in the amount of data available to scientists, yet many of the techniques used to analyse this data cannot cope with such large datasets. Therefore, strategies need to be employed as a pre-processing step to reduce the number of objects or measurements whilst retaining important information. Spectral dimensionality reduction is one such tool for the data processing pipeline. Numerous algorithms and improvements have been proposed for the purpose of performing spectral dimensionality reduction, yet there is still no gold standard technique. This book provides a survey and reference aimed at advanced undergraduate and postgraduate students as well as researchers, scientists, and engineers in a wide range of disciplines. Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Paolo Frasconi
Download or read book Machine Learning and Knowledge Discovery in Databases written by Paolo Frasconi and published by Springer. This book was released on 2016-09-03 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.
Book Synopsis Mathematical Theories of Machine Learning - Theory and Applications by : Bin Shi
Download or read book Mathematical Theories of Machine Learning - Theory and Applications written by Bin Shi and published by Springer. This book was released on 2019-06-12 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.
Book Synopsis Intelligent Computing by : Kohei Arai
Download or read book Intelligent Computing written by Kohei Arai and published by Springer Nature. This book was released on 2021-07-12 with total page 1184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive collection of chapters focusing on the core areas of computing and their further applications in the real world. Each chapter is a paper presented at the Computing Conference 2021 held on 15-16 July 2021. Computing 2021 attracted a total of 638 submissions which underwent a double-blind peer review process. Of those 638 submissions, 235 submissions have been selected to be included in this book. The goal of this conference is to give a platform to researchers with fundamental contributions and to be a premier venue for academic and industry practitioners to share new ideas and development experiences. We hope that readers find this volume interesting and valuable as it provides the state-of-the-art intelligent methods and techniques for solving real-world problems. We also expect that the conference and its publications is a trigger for further related research and technology improvements in this important subject.
Book Synopsis Mathematical Models for Remote Sensing Image Processing by : Gabriele Moser
Download or read book Mathematical Models for Remote Sensing Image Processing written by Gabriele Moser and published by Springer. This book was released on 2017-11-28 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book maximizes reader insights into the field of mathematical models and methods for the processing of two-dimensional remote sensing images. It presents a broad analysis of the field, encompassing passive and active sensors, hyperspectral images, synthetic aperture radar (SAR), interferometric SAR, and polarimetric SAR data. At the same time, it addresses highly topical subjects involving remote sensing data types (e.g., very high-resolution images, multiangular or multiresolution data, and satellite image time series) and analysis methodologies (e.g., probabilistic graphical models, hierarchical image representations, kernel machines, data fusion, and compressive sensing) that currently have primary importance in the field of mathematical modelling for remote sensing and image processing. Each chapter focuses on a particular type of remote sensing data and/or on a specific methodological area, presenting both a thorough analysis of the previous literature and a methodological and experimental discussion of at least two advanced mathematical methods for information extraction from remote sensing data. This organization ensures that both tutorial information and advanced subjects are covered. With each chapter being written by research scientists from (at least) two different institutions, it offers multiple professional experiences and perspectives on each subject. The book also provides expert analysis and commentary from leading remote sensing and image processing researchers, many of whom serve on the editorial boards of prestigious international journals in these fields, and are actively involved in international scientific societies. Providing the reader with a comprehensive picture of the overall advances and the current cutting-edge developments in the field of mathematical models for remote sensing image analysis, this book is ideal as both a reference resource and a textbook for graduate and doctoral students as well as for remote sensing scientists and practitioners.
Book Synopsis Artificial Neural Networks in Pattern Recognition by : Neamat El Gayar
Download or read book Artificial Neural Networks in Pattern Recognition written by Neamat El Gayar and published by Springer. This book was released on 2014-09-29 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.