Machine Learning with Amazon SageMaker Cookbook

Download Machine Learning with Amazon SageMaker Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566123
Total Pages : 763 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Amazon SageMaker Cookbook by : Joshua Arvin Lat

Download or read book Machine Learning with Amazon SageMaker Cookbook written by Joshua Arvin Lat and published by Packt Publishing Ltd. This book was released on 2021-10-29 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems. What you will learnTrain and deploy NLP, time series forecasting, and computer vision models to solve different business problemsPush the limits of customization in SageMaker using custom container imagesUse AutoML capabilities with SageMaker Autopilot to create high-quality modelsWork with effective data analysis and preparation techniquesExplore solutions for debugging and managing ML experiments and deploymentsDeal with bias detection and ML explainability requirements using SageMaker ClarifyAutomate intermediate and complex deployments and workflows using a variety of solutionsWho this book is for This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

Machine Learning Engineering on AWS

Download Machine Learning Engineering on AWS PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1803231386
Total Pages : 530 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering on AWS by : Joshua Arvin Lat

Download or read book Machine Learning Engineering on AWS written by Joshua Arvin Lat and published by Packt Publishing Ltd. This book was released on 2022-10-27 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle Key FeaturesGain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and moreUse container and serverless services to solve a variety of ML engineering requirementsDesign, build, and secure automated MLOps pipelines and workflows on AWSBook Description There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements. What you will learnFind out how to train and deploy TensorFlow and PyTorch models on AWSUse containers and serverless services for ML engineering requirementsDiscover how to set up a serverless data warehouse and data lake on AWSBuild automated end-to-end MLOps pipelines using a variety of servicesUse AWS Glue DataBrew and SageMaker Data Wrangler for data engineeringExplore different solutions for deploying deep learning models on AWSApply cost optimization techniques to ML environments and systemsPreserve data privacy and model privacy using a variety of techniquesWho this book is for This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

Learn Amazon SageMaker

Download Learn Amazon SageMaker PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801814155
Total Pages : 554 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Learn Amazon SageMaker by : Julien Simon

Download or read book Learn Amazon SageMaker written by Julien Simon and published by Packt Publishing Ltd. This book was released on 2021-11-26 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerOptimize the accuracy, cost, and fairness of your modelsCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Book Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnBecome well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and natural language processing (NLP) models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.

Getting Started with Amazon SageMaker Studio

Download Getting Started with Amazon SageMaker Studio PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801073481
Total Pages : 327 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Getting Started with Amazon SageMaker Studio by : Michael Hsieh

Download or read book Getting Started with Amazon SageMaker Studio written by Michael Hsieh and published by Packt Publishing Ltd. This book was released on 2022-03-31 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code Key FeaturesUnderstand the ML lifecycle in the cloud and its development on Amazon SageMaker StudioLearn to apply SageMaker features in SageMaker Studio for ML use casesScale and operationalize the ML lifecycle effectively using SageMaker StudioBook Description Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases. What you will learnExplore the ML development life cycle in the cloudUnderstand SageMaker Studio features and the user interfaceBuild a dataset with clicks and host a feature store for MLTrain ML models with ease and scaleCreate ML models and solutions with little codeHost ML models in the cloud with optimal cloud resourcesEnsure optimal model performance with model monitoringApply governance and operational excellence to ML projectsWho this book is for This book is for data scientists and machine learning engineers who are looking to become well-versed with Amazon SageMaker Studio and gain hands-on machine learning experience to handle every step in the ML lifecycle, including building data as well as training and hosting models. Although basic knowledge of machine learning and data science is necessary, no previous knowledge of SageMaker Studio and cloud experience is required.

The Machine Learning Solutions Architect Handbook

Download The Machine Learning Solutions Architect Handbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801070415
Total Pages : 442 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis The Machine Learning Solutions Architect Handbook by : David Ping

Download or read book The Machine Learning Solutions Architect Handbook written by David Ping and published by Packt Publishing Ltd. This book was released on 2022-01-21 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book DescriptionWhen equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You’ll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook.

Machine Learning with Amazon SageMaker Cookbook

Download Machine Learning with Amazon SageMaker Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566123
Total Pages : 763 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Amazon SageMaker Cookbook by : Joshua Arvin Lat

Download or read book Machine Learning with Amazon SageMaker Cookbook written by Joshua Arvin Lat and published by Packt Publishing Ltd. This book was released on 2021-10-29 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems. What you will learnTrain and deploy NLP, time series forecasting, and computer vision models to solve different business problemsPush the limits of customization in SageMaker using custom container imagesUse AutoML capabilities with SageMaker Autopilot to create high-quality modelsWork with effective data analysis and preparation techniquesExplore solutions for debugging and managing ML experiments and deploymentsDeal with bias detection and ML explainability requirements using SageMaker ClarifyAutomate intermediate and complex deployments and workflows using a variety of solutionsWho this book is for This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

Python Machine Learning Cookbook

Download Python Machine Learning Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789800757
Total Pages : 632 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning Cookbook by : Giuseppe Ciaburro

Download or read book Python Machine Learning Cookbook written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2019-03-30 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key FeaturesLearn and implement machine learning algorithms in a variety of real-life scenariosCover a range of tasks catering to supervised, unsupervised and reinforcement learning techniquesFind easy-to-follow code solutions for tackling common and not-so-common challengesBook Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learnUse predictive modeling and apply it to real-world problemsExplore data visualization techniques to interact with your dataLearn how to build a recommendation engineUnderstand how to interact with text data and build models to analyze itWork with speech data and recognize spoken words using Hidden Markov ModelsGet well versed with reinforcement learning, automated ML, and transfer learningWork with image data and build systems for image recognition and biometric face recognitionUse deep neural networks to build an optical character recognition systemWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.

Actionable Insights with Amazon QuickSight

Download Actionable Insights with Amazon QuickSight PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801072000
Total Pages : 242 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Actionable Insights with Amazon QuickSight by : Manos Samatas

Download or read book Actionable Insights with Amazon QuickSight written by Manos Samatas and published by Packt Publishing Ltd. This book was released on 2022-01-28 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build interactive dashboards and storytelling reports at scale with the cloud-native BI tool that integrates embedded analytics and ML-powered insights effortlessly Key FeaturesExplore Amazon QuickSight, manage data sources, and build and share dashboardsLearn best practices from an AWS certified big data solutions architect Manage and monitor dashboards using the QuickSight API and other AWS services such as Amazon CloudTrailBook Description Amazon Quicksight is an exciting new visualization that rivals PowerBI and Tableau, bringing several exciting features to the table – but sadly, there aren't many resources out there that can help you learn the ropes. This book seeks to remedy that with the help of an AWS-certified expert who will help you leverage its full capabilities. After learning QuickSight's fundamental concepts and how to configure data sources, you'll be introduced to the main analysis-building functionality of QuickSight to develop visuals and dashboards, and explore how to develop and share interactive dashboards with parameters and on-screen controls. You'll dive into advanced filtering options with URL actions before learning how to set up alerts and scheduled reports. Next, you'll familiarize yourself with the types of insights before getting to grips with adding ML insights such as forecasting capabilities, analyzing time series data, adding narratives, and outlier detection to your dashboards. You'll also explore patterns to automate operations and look closer into the API actions that allow us to control settings. Finally, you'll learn advanced topics such as embedded dashboards and multitenancy. By the end of this book, you'll be well-versed with QuickSight's BI and analytics functionalities that will help you create BI apps with ML capabilities. What you will learnUnderstand the wider AWS analytics ecosystem and how QuickSight fits within itSet up and configure data sources with Amazon QuickSightInclude custom controls and add interactivity to your BI application using parametersAdd ML insights such as forecasting, anomaly detection, and narrativesExplore patterns to automate operations using QuickSight APIsCreate interactive dashboards and storytelling with Amazon QuickSightDesign an embedded multi-tenant analytics architectureFocus on data permissions and how to manage Amazon QuickSight operationsWho this book is for This book is for business intelligence (BI) developers and data analysts who are looking to create interactive dashboards using data from Lake House on AWS with Amazon QuickSight. It will also be useful for anyone who wants to learn Amazon QuickSight in depth using practical, up-to-date examples. You will need to be familiar with general data visualization concepts before you get started with this book, however, no prior experience with Amazon QuickSight is required.

Agile Machine Learning with DataRobot

Download Agile Machine Learning with DataRobot PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801078645
Total Pages : 345 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Agile Machine Learning with DataRobot by : Bipin Chadha

Download or read book Agile Machine Learning with DataRobot written by Bipin Chadha and published by Packt Publishing Ltd. This book was released on 2021-12-24 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage DataRobot's enterprise AI platform and automated decision intelligence to extract business value from data Key FeaturesGet well-versed with DataRobot features using real-world examplesUse this all-in-one platform to build, monitor, and deploy ML models for handling the entire production life cycleMake use of advanced DataRobot capabilities to programmatically build and deploy a large number of ML modelsBook Description DataRobot enables data science teams to become more efficient and productive. This book helps you to address machine learning (ML) challenges with DataRobot's enterprise platform, enabling you to extract business value from data and rapidly create commercial impact for your organization. You'll begin by learning how to use DataRobot's features to perform data prep and cleansing tasks automatically. The book then covers best practices for building and deploying ML models, along with challenges faced while scaling them to handle complex business problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare your data to build ML models and ways to interpret results. You'll also discover how to analyze the model's predictions and turn them into actionable insights for business users. Next, you'll create model documentation for internal as well as compliance purposes and learn how the model gets deployed as an API. In addition, you'll find out how to operationalize and monitor the model's performance. Finally, you'll work with examples on time series forecasting, NLP, image processing, MLOps, and more using advanced DataRobot capabilities. By the end of this book, you'll have learned to use DataRobot's AutoML and MLOps features to scale ML model building by avoiding repetitive tasks and common errors. What you will learnUnderstand and solve business problems using DataRobotUse DataRobot to prepare your data and perform various data analysis tasks to start building modelsDevelop robust ML models and assess their results correctly before deploymentExplore various DataRobot functions and outputs to help you understand the models and select the one that best solves the business problemAnalyze a model's predictions and turn them into actionable insights for business usersUnderstand how DataRobot helps in governing, deploying, and maintaining ML modelsWho this book is for This book is for data scientists, data analysts, and data enthusiasts looking for a practical guide to building and deploying robust machine learning models using DataRobot. Experienced data scientists will also find this book helpful for rapidly exploring, building, and deploying a broader range of models. The book assumes a basic understanding of machine learning.

Deep Learning with fastai Cookbook

Download Deep Learning with fastai Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800209991
Total Pages : 340 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with fastai Cookbook by : Mark Ryan

Download or read book Deep Learning with fastai Cookbook written by Mark Ryan and published by Packt Publishing Ltd. This book was released on 2021-09-24 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of the easy-to-use, high-performance fastai framework to rapidly create complete deep learning solutions with few lines of code Key FeaturesDiscover how to apply state-of-the-art deep learning techniques to real-world problemsBuild and train neural networks using the power and flexibility of the fastai frameworkUse deep learning to tackle problems such as image classification and text classificationBook Description fastai is an easy-to-use deep learning framework built on top of PyTorch that lets you rapidly create complete deep learning solutions with as few as 10 lines of code. Both predominant low-level deep learning frameworks, TensorFlow and PyTorch, require a lot of code, even for straightforward applications. In contrast, fastai handles the messy details for you and lets you focus on applying deep learning to actually solve problems. The book begins by summarizing the value of fastai and showing you how to create a simple 'hello world' deep learning application with fastai. You'll then learn how to use fastai for all four application areas that the framework explicitly supports: tabular data, text data (NLP), recommender systems, and vision data. As you advance, you'll work through a series of practical examples that illustrate how to create real-world applications of each type. Next, you'll learn how to deploy fastai models, including creating a simple web application that predicts what object is depicted in an image. The book wraps up with an overview of the advanced features of fastai. By the end of this fastai book, you'll be able to create your own deep learning applications using fastai. You'll also have learned how to use fastai to prepare raw datasets, explore datasets, train deep learning models, and deploy trained models. What you will learnPrepare real-world raw datasets to train fastai deep learning modelsTrain fastai deep learning models using text and tabular dataCreate recommender systems with fastaiFind out how to assess whether fastai is a good fit for a given problemDeploy fastai deep learning models in web applicationsTrain fastai deep learning models for image classificationWho this book is for This book is for data scientists, machine learning developers, and deep learning enthusiasts looking to explore the fastai framework using a recipe-based approach. Working knowledge of the Python programming language and machine learning basics is strongly recommended to get the most out of this deep learning book.

Natural Language Processing with AWS AI Services

Download Natural Language Processing with AWS AI Services PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801815488
Total Pages : 508 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with AWS AI Services by : Mona M

Download or read book Natural Language Processing with AWS AI Services written by Mona M and published by Packt Publishing Ltd. This book was released on 2021-11-26 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work through interesting real-life business use cases to uncover valuable insights from unstructured text using AWS AI services Key FeaturesGet to grips with AWS AI services for NLP and find out how to use them to gain strategic insightsRun Python code to use Amazon Textract and Amazon Comprehend to accelerate business outcomesUnderstand how you can integrate human-in-the-loop for custom NLP use cases with Amazon A2IBook Description Natural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production. To start with, you'll understand the importance of NLP in today's business applications and learn the features of Amazon Comprehend and Amazon Textract to build NLP models using Python and Jupyter Notebooks. The book then shows you how to integrate AI in applications for accelerating business outcomes with just a few lines of code. Throughout the book, you'll cover use cases such as smart text search, setting up compliance and controls when processing confidential documents, real-time text analytics, and much more to understand various NLP scenarios. You'll deploy and monitor scalable NLP models in production for real-time and batch requirements. As you advance, you'll explore strategies for including humans in the loop for different purposes in a document processing workflow. Moreover, you'll learn best practices for auto-scaling your NLP inference for enterprise traffic. Whether you're new to ML or an experienced practitioner, by the end of this NLP book, you'll have the confidence to use AWS AI services to build powerful NLP applications. What you will learnAutomate various NLP workflows on AWS to accelerate business outcomesUse Amazon Textract for text, tables, and handwriting recognition from images and PDF filesGain insights from unstructured text in the form of sentiment analysis, topic modeling, and more using Amazon ComprehendSet up end-to-end document processing pipelines to understand the role of humans in the loopDevelop NLP-based intelligent search solutions with just a few lines of codeCreate both real-time and batch document processing pipelines using PythonWho this book is for If you're an NLP developer or data scientist looking to get started with AWS AI services to implement various NLP scenarios quickly, this book is for you. It will show you how easy it is to integrate AI in applications with just a few lines of code. A basic understanding of machine learning (ML) concepts is necessary to understand the concepts covered. Experience with Jupyter notebooks and Python will be helpful.

Building and Automating Penetration Testing Labs in the Cloud

Download Building and Automating Penetration Testing Labs in the Cloud PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1837639922
Total Pages : 562 pages
Book Rating : 4.8/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Building and Automating Penetration Testing Labs in the Cloud by : Joshua Arvin Lat

Download or read book Building and Automating Penetration Testing Labs in the Cloud written by Joshua Arvin Lat and published by Packt Publishing Ltd. This book was released on 2023-10-13 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your penetration testing career to the next level by discovering how to set up and exploit cost-effective hacking lab environments on AWS, Azure, and GCP Key Features Explore strategies for managing the complexity, cost, and security of running labs in the cloud Unlock the power of infrastructure as code and generative AI when building complex lab environments Learn how to build pentesting labs that mimic modern environments on AWS, Azure, and GCP Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe significant increase in the number of cloud-related threats and issues has led to a surge in the demand for cloud security professionals. This book will help you set up vulnerable-by-design environments in the cloud to minimize the risks involved while learning all about cloud penetration testing and ethical hacking. This step-by-step guide begins by helping you design and build penetration testing labs that mimic modern cloud environments running on AWS, Azure, and Google Cloud Platform (GCP). Next, you’ll find out how to use infrastructure as code (IaC) solutions to manage a variety of lab environments in the cloud. As you advance, you’ll discover how generative AI tools, such as ChatGPT, can be leveraged to accelerate the preparation of IaC templates and configurations. You’ll also learn how to validate vulnerabilities by exploiting misconfigurations and vulnerabilities using various penetration testing tools and techniques. Finally, you’ll explore several practical strategies for managing the complexity, cost, and risks involved when dealing with penetration testing lab environments in the cloud. By the end of this penetration testing book, you’ll be able to design and build cost-effective vulnerable cloud lab environments where you can experiment and practice different types of attacks and penetration testing techniques.What you will learn Build vulnerable-by-design labs that mimic modern cloud environments Find out how to manage the risks associated with cloud lab environments Use infrastructure as code to automate lab infrastructure deployments Validate vulnerabilities present in penetration testing labs Find out how to manage the costs of running labs on AWS, Azure, and GCP Set up IAM privilege escalation labs for advanced penetration testing Use generative AI tools to generate infrastructure as code templates Import the Kali Linux Generic Cloud Image to the cloud with ease Who this book is forThis book is for security engineers, cloud engineers, and aspiring security professionals who want to learn more about penetration testing and cloud security. Other tech professionals working on advancing their career in cloud security who want to learn how to manage the complexity, costs, and risks associated with building and managing hacking lab environments in the cloud will find this book useful.

Managing Data Integrity for Finance

Download Managing Data Integrity for Finance PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1837636095
Total Pages : 434 pages
Book Rating : 4.8/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Managing Data Integrity for Finance by : Jane Sarah Lat

Download or read book Managing Data Integrity for Finance written by Jane Sarah Lat and published by Packt Publishing Ltd. This book was released on 2024-01-31 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Level up your career by learning best practices for managing the data quality and integrity of your financial data Key Features Accelerate data integrity management using artificial intelligence-powered solutions Learn how business intelligence tools, ledger databases, and database locks solve data integrity issues Find out how to detect fraudulent transactions affecting financial report integrity Book DescriptionData integrity management plays a critical role in the success and effectiveness of organizations trying to use financial and operational data to make business decisions. Unfortunately, there is a big gap between the analysis and management of finance data along with the proper implementation of complex data systems across various organizations. The first part of this book covers the important concepts for data quality and data integrity relevant to finance, data, and tech professionals. The second part then focuses on having you use several data tools and platforms to manage and resolve data integrity issues on financial data. The last part of this the book covers intermediate and advanced solutions, including managed cloud-based ledger databases, database locks, and artificial intelligence, to manage the integrity of financial data in systems and databases. After finishing this hands-on book, you will be able to solve various data integrity issues experienced by organizations globally.What you will learn Develop a customized financial data quality scorecard Utilize business intelligence tools to detect, manage, and resolve data integrity issues Find out how to use managed cloud-based ledger databases for financial data integrity Apply database locking techniques to prevent transaction integrity issues involving finance data Discover the methods to detect fraudulent transactions affecting financial report integrity Use artificial intelligence-powered solutions to resolve various data integrity issues and challenges Who this book is for This book is for financial analysts, technical leaders, and data professionals interested in learning practical strategies for managing data integrity and data quality using relevant frameworks and tools. A basic understanding of finance concepts, accounting, and data analysis is expected. Knowledge of finance management is not a prerequisite, but it’ll help you grasp the more advanced topics covered in this book.

AI engineering productivity cookbook

Download AI engineering productivity cookbook PDF Online Free

Author :
Publisher : Intellias Global Limited
ISBN 13 :
Total Pages : 115 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis AI engineering productivity cookbook by :

Download or read book AI engineering productivity cookbook written by and published by Intellias Global Limited. This book was released on 2024-10-09 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the potential of AI in software engineering for higher productivity and reduced time-to-market Realize the power of AI-assisted engineering for your business needs with our comprehensive AI Engineering Productivity Cookbook, designed for Engineering, Product, and Innovation teams. Based on Intellias 4-month AI Copilot Implementation program, our experts will guide you through integrating AI coding tools into your development processes, optimizing your workflow, and driving innovation. This playbook is your essential companion, whether you are leading a digital-native startup or navigating the digital transformation of a traditional enterprise. Explore how to effectively fuse AI into your software development lifecycle: From AI Theory to Practice Bridge the gap between AI’s potential and practical implementation strategies to accelerate your projects and address the challenges of technology evolution. AI-Assisted Engineering Learn how AI tools can automate routine coding tasks, improve code quality, and reduce time to market, all aimed at scaling development efforts without sacrificing quality. Advanced AI Features Discover advanced AI functionality that can predict development challenges, suggest optimizations, and personalize development strategies to fit your specific needs. Collaborative Development with AI Learn how AI can promote better interoperability among your development team, making remote and hybrid work environments more efficient and connected. Ethical Considerations and Security Practices Make sure your AI implementations maintain high security standards and adhere to regulatory requirements as well as ethical considerations, essential for preserving trust and integrity in your software. Building AI Products from Business and User Perspectives Align AI product development with business objectives and user expectations to create solutions that not only perform well but also deliver but also deliver on the promise of enhanced customer satisfaction and engagement. The Future of AI in Software Development Stay informed about the future trends of AI in the tech industry and prepare your team for upcoming innovations and shifts in the software development paradigm.

Natural Language Processing with Java Cookbook

Download Natural Language Processing with Java Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789808839
Total Pages : 374 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Java Cookbook by : Richard M. Reese

Download or read book Natural Language Processing with Java Cookbook written by Richard M. Reese and published by Packt Publishing Ltd. This book was released on 2019-04-25 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key FeaturesPerform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operationsBook Description Natural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon’s AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learnExplore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languagesWho this book is for This book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.

AWS SysOps Cookbook

Download AWS SysOps Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838553916
Total Pages : 481 pages
Book Rating : 4.8/5 (385 download)

DOWNLOAD NOW!


Book Synopsis AWS SysOps Cookbook by : Eric Z. Beard

Download or read book AWS SysOps Cookbook written by Eric Z. Beard and published by Packt Publishing Ltd. This book was released on 2019-09-27 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an AWS SysOps administrator and explore best practices to maintain a well-architected, resilient, and secure AWS environment Key FeaturesExplore AWS Cloud functionalities through a recipe-based approachGet to grips with a variety of techniques for automating your infrastructureDiscover industry-proven best practices for architecting reliable and efficient workloadsBook Description AWS is an on-demand remote computing service providing cloud infrastructure over the internet with storage, bandwidth, and customized support for APIs. This updated second edition will help you implement these services and efficiently administer your AWS environment. You will start with the AWS fundamentals and then understand how to manage multiple accounts before setting up consolidated billing. The book will assist you in setting up reliable and fast hosting for static websites, sharing data between running instances and backing up data for compliance. By understanding how to use compute service, you will also discover how to achieve quick and consistent instance provisioning. You’ll then learn to provision storage volumes and autoscale an app server. Next, you’ll explore serverless development with AWS Lambda, and gain insights into using networking and database services such as Amazon Neptune. The later chapters will focus on management tools like AWS CloudFormation, and how to secure your cloud resources and estimate costs for your infrastructure. Finally, you’ll use the AWS well-architected framework to conduct a technology baseline review self-assessment and identify critical areas for improvement in the management and operation of your cloud-based workloads. By the end of this book, you’ll have the skills to effectively administer your AWS environment. What you will learnSecure your account by creating IAM users and avoiding the use of the root loginSimplify the creation of a multi-account landing zone using AWS Control TowerMaster Amazon S3 for unlimited, cost-efficient storage of dataExplore a variety of compute resources on the AWS Cloud, such as EC2 and AWS LambdaConfigure secure networks using Amazon VPC, access control lists, and security groupsEstimate your monthly bill by using cost estimation toolsLearn to host a website with Amazon Route 53, Amazon CloudFront, and S3Who this book is for If you are an administrator, DevOps engineer, or an IT professional interested in exploring administrative tasks on the AWS Cloud, then this book is for you. Familiarity with cloud computing platforms and some understanding of virtualization, networking, and other administration-related tasks is assumed.

Amazon Redshift Cookbook

Download Amazon Redshift Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800561849
Total Pages : 384 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Amazon Redshift Cookbook by : Shruti Worlikar

Download or read book Amazon Redshift Cookbook written by Shruti Worlikar and published by Packt Publishing Ltd. This book was released on 2021-07-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how to build a cloud-based data warehouse at petabyte-scale that is burstable and built to scale for end-to-end analytical solutions Key FeaturesDiscover how to translate familiar data warehousing concepts into Redshift implementationUse impressive Redshift features to optimize development, productionizing, and operations processesFind out how to use advanced features such as concurrency scaling, Redshift Spectrum, and federated queriesBook Description Amazon Redshift is a fully managed, petabyte-scale AWS cloud data warehousing service. It enables you to build new data warehouse workloads on AWS and migrate on-premises traditional data warehousing platforms to Redshift. This book on Amazon Redshift starts by focusing on Redshift architecture, showing you how to perform database administration tasks on Redshift. You'll then learn how to optimize your data warehouse to quickly execute complex analytic queries against very large datasets. Because of the massive amount of data involved in data warehousing, designing your database for analytical processing lets you take full advantage of Redshift's columnar architecture and managed services. As you advance, you'll discover how to deploy fully automated and highly scalable extract, transform, and load (ETL) processes, which help minimize the operational efforts that you have to invest in managing regular ETL pipelines and ensure the timely and accurate refreshing of your data warehouse. Finally, you'll gain a clear understanding of Redshift use cases, data ingestion, data management, security, and scaling so that you can build a scalable data warehouse platform. By the end of this Redshift book, you'll be able to implement a Redshift-based data analytics solution and have understood the best practice solutions to commonly faced problems. What you will learnUse Amazon Redshift to build petabyte-scale data warehouses that are agile at scaleIntegrate your data warehousing solution with a data lake using purpose-built features and services on AWSBuild end-to-end analytical solutions from data sourcing to consumption with the help of useful recipesLeverage Redshift's comprehensive security capabilities to meet the most demanding business requirementsFocus on architectural insights and rationale when using analytical recipesDiscover best practices for working with big data to operate a fully managed solutionWho this book is for This book is for anyone involved in architecting, implementing, and optimizing an Amazon Redshift data warehouse, such as data warehouse developers, data analysts, database administrators, data engineers, and data scientists. Basic knowledge of data warehousing, database systems, and cloud concepts and familiarity with Redshift will be beneficial.