Machine Learning Assisted Evolutionary Multi- and Many-Objective Optimization

Download Machine Learning Assisted Evolutionary Multi- and Many-Objective Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819920965
Total Pages : 253 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Assisted Evolutionary Multi- and Many-Objective Optimization by : Dhish Kumar Saxena

Download or read book Machine Learning Assisted Evolutionary Multi- and Many-Objective Optimization written by Dhish Kumar Saxena and published by Springer Nature. This book was released on with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data-Driven Evolutionary Optimization

Download Data-Driven Evolutionary Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030746402
Total Pages : 393 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Evolutionary Optimization by : Yaochu Jin

Download or read book Data-Driven Evolutionary Optimization written by Yaochu Jin and published by Springer Nature. This book was released on 2021-06-28 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Multi-Objective Optimization using Evolutionary Algorithms

Download Multi-Objective Optimization using Evolutionary Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471873396
Total Pages : 540 pages
Book Rating : 4.8/5 (733 download)

DOWNLOAD NOW!


Book Synopsis Multi-Objective Optimization using Evolutionary Algorithms by : Kalyanmoy Deb

Download or read book Multi-Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Evolutionary Multi-Criterion Optimization

Download Evolutionary Multi-Criterion Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030720624
Total Pages : 781 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Multi-Criterion Optimization by : Hisao Ishibuchi

Download or read book Evolutionary Multi-Criterion Optimization written by Hisao Ishibuchi and published by Springer Nature. This book was released on 2021-03-24 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021. The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications.

Innovization

Download Innovization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540731726
Total Pages : 300 pages
Book Rating : 4.7/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Innovization by : Kalyanmoy Deb

Download or read book Innovization written by Kalyanmoy Deb and published by Springer. This book was released on 2016-06-12 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every designer wants to know what makes a product or process optimal. This book suggests a holistic approach to optimization that involves two steps: find a set of trade-off optimal solutions involving two or more conflicting objectives related to the problem, and then analyze these high-performing solutions to determine solution principles that commonly prevail among these solutions. Since the solutions are optimal, such common principles are likely to exist; and since these principles are common to many solutions they are likely to provide robust, reliable solution principles. The author is one of the leading researchers in multiobjective optimization, and an expert in design methodology. In this book he offers introductions to innovation in design; multiobjective optimization, in particular evolutionary multiobjective optimization (EMO) techniques that find multiple, trade-off, optimal solutions; and knowledge extraction from multivariate data using graphical, regression and clustering techniques. He then introduces his innovization methodology for revealing new, innovative design principles related to decision variables and objectives, and he demonstrates it through engineering case studies, in particular product and process design problems. The book will be of benefit to practitioners, researchers and students engaged with issues of optimal design, in particular in domains such as engineering design, product design, engineering optimization, manufacturing, process design and complex systems. The sample computer code referenced is available from the author's website.

Multidisciplinary Design Optimization

Download Multidisciplinary Design Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898713596
Total Pages : 476 pages
Book Rating : 4.7/5 (135 download)

DOWNLOAD NOW!


Book Synopsis Multidisciplinary Design Optimization by : Natalia M. Alexandrov

Download or read book Multidisciplinary Design Optimization written by Natalia M. Alexandrov and published by SIAM. This book was released on 1997-01-01 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidisciplinary design optimization (MDO) has recently emerged as a field of research and practice that brings together many previously disjointed disciplines and tools of engineering and mathematics. MDO can be described as a technology, environment, or methodology for the design of complex, coupled engineering systems, such as aircraft, automobiles, and other mechanisms, the behavior of which is determined by interacting subsystems.

Multi-Objective Optimization using Artificial Intelligence Techniques

Download Multi-Objective Optimization using Artificial Intelligence Techniques PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030248356
Total Pages : 66 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Multi-Objective Optimization using Artificial Intelligence Techniques by : Seyedali Mirjalili

Download or read book Multi-Objective Optimization using Artificial Intelligence Techniques written by Seyedali Mirjalili and published by Springer. This book was released on 2019-07-24 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.

Evolutionary Algorithms for Solving Multi-Objective Problems

Download Evolutionary Algorithms for Solving Multi-Objective Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387367977
Total Pages : 810 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello

Download or read book Evolutionary Algorithms for Solving Multi-Objective Problems written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.

Evolutionary Multiobjective Optimization

Download Evolutionary Multiobjective Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846281377
Total Pages : 313 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Multiobjective Optimization by : Ajith Abraham

Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.

Multiobjective Optimization

Download Multiobjective Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540889086
Total Pages : 481 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Multiobjective Optimization by : Jürgen Branke

Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.

Genetic Algorithm Essentials

Download Genetic Algorithm Essentials PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331952156X
Total Pages : 94 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Genetic Algorithm Essentials by : Oliver Kramer

Download or read book Genetic Algorithm Essentials written by Oliver Kramer and published by Springer. This book was released on 2017-01-07 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

Computational Intelligence in Expensive Optimization Problems

Download Computational Intelligence in Expensive Optimization Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364210701X
Total Pages : 736 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Computational Intelligence in Expensive Optimization Problems by : Yoel Tenne

Download or read book Computational Intelligence in Expensive Optimization Problems written by Yoel Tenne and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.

Evolutionary Multi-Criterion Optimization

Download Evolutionary Multi-Criterion Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642010199
Total Pages : 599 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Multi-Criterion Optimization by : Matthias Ehrgott

Download or read book Evolutionary Multi-Criterion Optimization written by Matthias Ehrgott and published by Springer Science & Business Media. This book was released on 2009-03-26 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009, held in Nantes, France in April 2009. The 39 revised full papers presented together with 5 invited talks were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on theoretical analysis, uncertainty and noise, algorithm development, performance analysis and comparison, applications, MCDM Track, Many objectives, alternative methods, as well as EMO and MCDA.

Evolutionary Optimization

Download Evolutionary Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0792376544
Total Pages : 416 pages
Book Rating : 4.7/5 (923 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Optimization by : Ruhul Sarker

Download or read book Evolutionary Optimization written by Ruhul Sarker and published by Springer Science & Business Media. This book was released on 2002-01-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.

Approximation and Optimization

Download Approximation and Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030127672
Total Pages : 244 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Approximation and Optimization by : Ioannis C. Demetriou

Download or read book Approximation and Optimization written by Ioannis C. Demetriou and published by Springer. This book was released on 2019-05-10 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.

Multi-Objective Optimization in Computational Intelligence: Theory and Practice

Download Multi-Objective Optimization in Computational Intelligence: Theory and Practice PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1599045001
Total Pages : 496 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Multi-Objective Optimization in Computational Intelligence: Theory and Practice by : Thu Bui, Lam

Download or read book Multi-Objective Optimization in Computational Intelligence: Theory and Practice written by Thu Bui, Lam and published by IGI Global. This book was released on 2008-05-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.

Knowledge Incorporation in Evolutionary Computation

Download Knowledge Incorporation in Evolutionary Computation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540445110
Total Pages : 543 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Incorporation in Evolutionary Computation by : Yaochu Jin

Download or read book Knowledge Incorporation in Evolutionary Computation written by Yaochu Jin and published by Springer. This book was released on 2013-04-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.