Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Local Zeta Functions Attached To The Minimal Spherical Series For A Class Of Symmetric Spaces
Download Local Zeta Functions Attached To The Minimal Spherical Series For A Class Of Symmetric Spaces full books in PDF, epub, and Kindle. Read online Local Zeta Functions Attached To The Minimal Spherical Series For A Class Of Symmetric Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces by : Nicole Bopp
Download or read book Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces written by Nicole Bopp and published by American Mathematical Soc.. This book was released on 2005 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intends to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces.
Book Synopsis Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces by : Nicole Bopp
Download or read book Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces written by Nicole Bopp and published by American Mathematical Soc.. This book was released on 2005 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this paper is to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces. These symmetric spaces are obtained as follows. We consider a graded simple real Lie algebra $\widetilde{\mathfrak g}$ of the form $\widetilde{\mathfrak g}=V^-\oplus \mathfrak g\oplus V^+$, where $[\mathfrak g,V^+]\subset V^+$, $[\mathfrak g,V^-]\subset V^-$ and $[V^-,V^+]\subset \mathfrak g$. If the graded algebra is regular, then a suitable group $G$ with Lie algebra $\mathfrak g$ has a finite number of open orbits in $V^+$, each of them is a realization of a symmetric space $G\slash H_p$.The functional equation gives a matrix relation between the local zeta functions associated to $H_p$-invariant distributions vectors for the same minimal spherical representation of $G$. This is a generalization of the functional equation obtained by Godement} and Jacquet for the local zeta function attached to a coefficient of a representation of $GL(n,\mathbb R)$.
Book Synopsis Quasi-Ordinary Power Series and Their Zeta Functions by : Enrique Artal-Bartolo
Download or read book Quasi-Ordinary Power Series and Their Zeta Functions written by Enrique Artal-Bartolo and published by American Mathematical Soc.. This book was released on 2005 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intends to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, this title computes the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h, T)$ of a quasi-ordinary power series $h$ of arbitrary dimension
Book Synopsis Zeta Integrals, Schwartz Spaces and Local Functional Equations by : Wen-Wei Li
Download or read book Zeta Integrals, Schwartz Spaces and Local Functional Equations written by Wen-Wei Li and published by Springer. This book was released on 2018-11-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties.
Book Synopsis Fermionic Expressions for Minimal Model Virasoro Characters by : Trevor Alan Welsh
Download or read book Fermionic Expressions for Minimal Model Virasoro Characters written by Trevor Alan Welsh and published by American Mathematical Soc.. This book was released on 2005 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fermionic expressions for all minimal model Virasoro characters $\chi DEGREES{p, p'}_{r, s}$ are stated and proved. Each such expression is a sum of terms of fundamental fermionic f
Book Synopsis Stability of Spherically Symmetric Wave Maps by : Joachim Krieger
Download or read book Stability of Spherically Symmetric Wave Maps written by Joachim Krieger and published by American Mathematical Soc.. This book was released on 2006 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a study of Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$.
Book Synopsis The Calculus of One-Sided $M$-Ideals and Multipliers in Operator Spaces by : David P. Blecher
Download or read book The Calculus of One-Sided $M$-Ideals and Multipliers in Operator Spaces written by David P. Blecher and published by American Mathematical Soc.. This book was released on 2006 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.
Book Synopsis On Boundary Interpolation for Matrix Valued Schur Functions by : Vladimir Bolotnikov
Download or read book On Boundary Interpolation for Matrix Valued Schur Functions written by Vladimir Bolotnikov and published by American Mathematical Soc.. This book was released on 2006 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of interpolation problems are considered in the Schur class of $p\times q$ matrix valued functions $S$ that are analytic and contractive in the open unit disk. The interpolation constraints are specified in terms of nontangential limits and angular derivatives at one or more (of a finite number of) boundary points. Necessary and sufficient conditions for existence of solutions to these problems and a description of all the solutions when these conditions are met is given.The analysis makes extensive use of a class of reproducing kernel Hilbert spaces ${\mathcal{H (S)$ that was introduced by de Branges and Rovnyak. The Stein equation that is associated with the interpolation problems under consideration is analyzed in detail. A lossless inverse scattering problem isalso considered.
Book Synopsis Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls by : Nicola Arcozzi
Download or read book Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls written by Nicola Arcozzi and published by American Mathematical Soc.. This book was released on 2006 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography
Book Synopsis Weil-Petersson Metric on the Universal Teichmuller Space by : Leon Armenovich Takhtadzhi︠a︡n
Download or read book Weil-Petersson Metric on the Universal Teichmuller Space written by Leon Armenovich Takhtadzhi︠a︡n and published by American Mathematical Soc.. This book was released on 2006 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ -- the Hilbert submanifold $T {0 (1)$ -- is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space. As an application, we derive Wolpert curvature formulas for the finite-dimensional Teichmuller spaces from the formulas for the universal Teichmuller space. We study in detail the Hilbert manifold structure on $T {0 (1)$ and characterize points on $T {0 (1)$ in terms of Bers and pre-Bers embeddings by proving that the Grunsky operators $B {1 $ and The results of this memoir were presented in our e-prints: Weil-Petersson metric on the universal Teichmuller space I. Curvature properties and Chern forms, arXiv:math.CV/0312172 (2003), and Weil-Petersson metric on the universal Teichmuller space II. Kahler potential and period mapping, arXiv:math.CV/0406408 (2004).
Book Synopsis A Random Tiling Model for Two Dimensional Electrostatics by : Mihai Ciucu
Download or read book A Random Tiling Model for Two Dimensional Electrostatics written by Mihai Ciucu and published by American Mathematical Soc.. This book was released on 2005 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the correlation of holes in random lozenge (i.e., unit rhombus) tilings of the triangular lattice. This book analyzes the joint correlation of these triangular holes when their complement is tiled uniformly at random by lozenges.
Book Synopsis Integrable Hamiltonian Systems on Complex Lie Groups by : Velimir Jurdjevic
Download or read book Integrable Hamiltonian Systems on Complex Lie Groups written by Velimir Jurdjevic and published by American Mathematical Soc.. This book was released on 2005 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. This title synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g}, $ of $G$
Book Synopsis The Complex Monge-Ampere Equation and Pluripotential Theory by : Sławomir Kołodziej
Download or read book The Complex Monge-Ampere Equation and Pluripotential Theory written by Sławomir Kołodziej and published by American Mathematical Soc.. This book was released on 2005 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Book Synopsis Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting by : Joseph A. Ball
Download or read book Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting written by Joseph A. Ball and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.
Book Synopsis Invariant Means and Finite Representation Theory of $C^*$-Algebras by : Nathanial Patrick Brown
Download or read book Invariant Means and Finite Representation Theory of $C^*$-Algebras written by Nathanial Patrick Brown and published by American Mathematical Soc.. This book was released on 2006 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.
Book Synopsis Semigroups Underlying First-Order Logic by : William Craig
Download or read book Semigroups Underlying First-Order Logic written by William Craig and published by American Mathematical Soc.. This book was released on 2006 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boolean, relation-induced, and other operations for dealing with first-order definability Uniform relations between sequences Diagonal relations Uniform diagonal relations and some kinds of bisections or bisectable relations Presentation of ${\mathbf S}_q$, ${\mathbf S}_p$ and related structures Presentation of ${\mathbf S}_{pq}$, ${\mathbf S}_{pe}$ and related structures Appendix. Presentation of ${\mathbf S}_{pqe}$ and related structures Bibliography Index of symbols Index of phrases and subjects List of relations involved in presentations Synopsis of presentations
Book Synopsis Entropy and Multivariable Interpolation by : Gelu Popescu
Download or read book Entropy and Multivariable Interpolation written by Gelu Popescu and published by American Mathematical Soc.. This book was released on 2006 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra $F ninfty$. We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem. All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Caratheodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra $F ninfty$ (resp. $W ninfty$) and their tensor products with $B({\mathcal H , {\mathcal K )$. In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of $\mathbb{C n$.