Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lectures On Vector Bundles
Download Lectures On Vector Bundles full books in PDF, epub, and Kindle. Read online Lectures On Vector Bundles ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Lectures on Vector Bundles by : J. Le Potier
Download or read book Lectures on Vector Bundles written by J. Le Potier and published by Cambridge University Press. This book was released on 1997-01-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.
Book Synopsis Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6 by : Robert C. Gunning
Download or read book Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6 written by Robert C. Gunning and published by Princeton University Press. This book was released on 2020-09-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6, will be forthcoming.
Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi
Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Algebraic Surfaces and Holomorphic Vector Bundles by : Robert Friedman
Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Book Synopsis Vector Bundles on Complex Projective Spaces by : Christian Okonek
Download or read book Vector Bundles on Complex Projective Spaces written by Christian Okonek and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some funda mental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each sec tion a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents.
Book Synopsis Moduli Spaces and Vector Bundles by : Steve Bradlow
Download or read book Moduli Spaces and Vector Bundles written by Steve Bradlow and published by Cambridge University Press. This book was released on 2009-05-21 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage includes foundational material as well as current research, authored by top specialists within their fields.
Book Synopsis Vector Bundles on Complex Projective Spaces by : Christian Okonek
Download or read book Vector Bundles on Complex Projective Spaces written by Christian Okonek and published by Springer Science & Business Media. This book was released on 2011-07-07 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are intended as an introduction to the methods of classi?cation of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = P . According to Serre (GAGA) the class- n cation of holomorphic vector bundles is equivalent to the classi?cation of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these ?elds are summarized at the beginning. One of the authors gave a survey in the S ́eminaire Bourbaki 1978 on the current state of the classi?cation of holomorphic vector bundles over P . This lecture then served as the basis for a course of lectures n in G ̈ottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the - troductory nature of this book we have had to leave out some di?cult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of pa- graphs. Each section is preceded by a short description of its contents.
Download or read book K-theory written by Michael Atiyah and published by CRC Press. This book was released on 2018-03-05 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.
Book Synopsis Vector Bundles in Algebraic Geometry by : N. J. Hitchin
Download or read book Vector Bundles in Algebraic Geometry written by N. J. Hitchin and published by Cambridge University Press. This book was released on 1995-03-16 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of survey articles by the main speakers at the 1993 Durham symposium on vector bundles in algebraic geometry.
Book Synopsis Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 by : Gerd Faltings
Download or read book Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 written by Gerd Faltings and published by Princeton University Press. This book was released on 2016-03-02 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Book Synopsis Lectures on Kähler Manifolds by : Werner Ballmann
Download or read book Lectures on Kähler Manifolds written by Werner Ballmann and published by European Mathematical Society. This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.
Book Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts
Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Book Synopsis Helices and Vector Bundles by : A. N. Rudakov
Download or read book Helices and Vector Bundles written by A. N. Rudakov and published by Cambridge University Press. This book was released on 1990-07-12 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising out of a series of seminars organized in Moscow by A.N. Rudakov, this volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry.
Book Synopsis Vector Bundles and Their Applications by : Glenys Luke
Download or read book Vector Bundles and Their Applications written by Glenys Luke and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the basic notions of vector bundles and their applications. The focus of attention is towards explaining the most important notions and geometric constructions connected with the theory of vector bundles. Theorems are not always formulated in maximal generality but rather in such a way that the geometric nature of the objects comes to the fore. Whenever possible examples are given to illustrate the role of vector bundles. Audience: With numerous illustrations and applications to various problems in mathematics and the sciences, the book will be of interest to a range of graduate students from pure and applied mathematics.
Book Synopsis Lectures on Kähler Geometry by : Andrei Moroianu
Download or read book Lectures on Kähler Geometry written by Andrei Moroianu and published by Cambridge University Press. This book was released on 2007-03-29 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis
Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
Book Synopsis Characteristic Classes by : John Willard Milnor
Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.