Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lectures On Algebraic And Differential Topology
Download Lectures On Algebraic And Differential Topology full books in PDF, epub, and Kindle. Read online Lectures On Algebraic And Differential Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Sergeĭ Vladimirovich Matveev Publisher :European Mathematical Society ISBN 13 :9783037190234 Total Pages :112 pages Book Rating :4.1/5 (92 download)
Book Synopsis Lectures on Algebraic Topology by : Sergeĭ Vladimirovich Matveev
Download or read book Lectures on Algebraic Topology written by Sergeĭ Vladimirovich Matveev and published by European Mathematical Society. This book was released on 2006 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.
Book Synopsis Differential Forms in Algebraic Topology by : Raoul Bott
Download or read book Differential Forms in Algebraic Topology written by Raoul Bott and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Book Synopsis A Concise Course in Algebraic Topology by : J. P. May
Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Book Synopsis Lectures on Algebraic and Differential Topology by : R. Bott
Download or read book Lectures on Algebraic and Differential Topology written by R. Bott and published by Springer. This book was released on 2006-11-15 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Lectures On Algebraic Topology by : Haynes R Miller
Download or read book Lectures On Algebraic Topology written by Haynes R Miller and published by World Scientific. This book was released on 2021-09-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.
Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis
Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
Book Synopsis Introduction to Differential Topology by : Theodor Bröcker
Download or read book Introduction to Differential Topology written by Theodor Bröcker and published by Cambridge University Press. This book was released on 1982-09-16 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Book Synopsis Topology from the Differentiable Viewpoint by : John Willard Milnor
Download or read book Topology from the Differentiable Viewpoint written by John Willard Milnor and published by Princeton University Press. This book was released on 1997-12-14 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Book Synopsis Differential Topology by : Morris W. Hirsch
Download or read book Differential Topology written by Morris W. Hirsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS
Book Synopsis Lectures on the Topology of 3-manifolds by : Nikolai Saveliev
Download or read book Lectures on the Topology of 3-manifolds written by Nikolai Saveliev and published by Walter de Gruyter. This book was released on 1999 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Algebraic Topology by : Marvin J. Greenberg
Download or read book Algebraic Topology written by Marvin J. Greenberg and published by CRC Press. This book was released on 2018-03-05 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great first book on algebraic topology. Introduces (co)homology through singular theory.
Book Synopsis Differential Topology by : Amiya Mukherjee
Download or read book Differential Topology written by Amiya Mukherjee and published by Birkhäuser. This book was released on 2015-06-30 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic and comprehensive account of the theory of differentiable manifolds and provides the necessary background for the use of fundamental differential topology tools. The text includes, in particular, the earlier works of Stephen Smale, for which he was awarded the Fields Medal. Explicitly, the topics covered are Thom transversality, Morse theory, theory of handle presentation, h-cobordism theorem and the generalised Poincaré conjecture. The material is the outcome of lectures and seminars on various aspects of differentiable manifolds and differential topology given over the years at the Indian Statistical Institute in Calcutta, and at other universities throughout India. The book will appeal to graduate students and researchers interested in these topics. An elementary knowledge of linear algebra, general topology, multivariate calculus, analysis and algebraic topology is recommended.
Book Synopsis Differential Topology by : C. T. C. Wall
Download or read book Differential Topology written by C. T. C. Wall and published by Cambridge University Press. This book was released on 2016-07-04 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the full scope of differential topology, this comprehensive account of geometric techniques for studying the topology of smooth manifolds offers a wide perspective on the field. Building up from first principles, concepts of manifolds are introduced, supplemented by thorough appendices giving background on topology and homotopy theory. Deep results are then developed from these foundations through in-depth treatments of the notions of general position and transversality, proper actions of Lie groups, handles (up to the h-cobordism theorem), immersions and embeddings, concluding with the surgery procedure and cobordism theory. Fully illustrated and rigorous in its approach, little prior knowledge is assumed, and yet growing complexity is instilled throughout. This structure gives advanced students and researchers an accessible route into the wide-ranging field of differential topology.
Book Synopsis Grid Homology for Knots and Links by : Peter S. Ozsváth
Download or read book Grid Homology for Knots and Links written by Peter S. Ozsváth and published by American Mathematical Soc.. This book was released on 2015-12-04 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.
Book Synopsis Topology and Geometry by : Glen E. Bredon
Download or read book Topology and Geometry written by Glen E. Bredon and published by Springer Science & Business Media. This book was released on 1993-06-24 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS
Book Synopsis Differential Topology by : Victor Guillemin
Download or read book Differential Topology written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 2010 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.
Book Synopsis A First Course in Geometric Topology and Differential Geometry by : Ethan D. Bloch
Download or read book A First Course in Geometric Topology and Differential Geometry written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2011-06-27 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The uniqueness of this text in combining geometric topology and differential geometry lies in its unifying thread: the notion of a surface. With numerous illustrations, exercises and examples, the student comes to understand the relationship of the modern abstract approach to geometric intuition. The text is kept at a concrete level, avoiding unnecessary abstractions, yet never sacrificing mathematical rigor. The book includes topics not usually found in a single book at this level.