Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Lecture Notes On Schrodinger Equations
Download Lecture Notes On Schrodinger Equations full books in PDF, epub, and Kindle. Read online Lecture Notes On Schrodinger Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Semilinear Schrodinger Equations by : Thierry Cazenave
Download or read book Semilinear Schrodinger Equations written by Thierry Cazenave and published by American Mathematical Soc.. This book was released on 2003 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.
Book Synopsis Lecture Notes on Schrödinger Equations by : Aleksandr Andreevich Pankov
Download or read book Lecture Notes on Schrödinger Equations written by Aleksandr Andreevich Pankov and published by . This book was released on 2007 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: Preface; A Bit of Quantum Mechanics; Operators in Hilbert Spaces; Spectral Theorem for Self-adjoint Operators; Compact Operators and the Hilbert-Schmidt Theorem; Elements of Perturbation Theory; Variational Principles; One-Dimensional Schrödinger Operator; Multidimensional Schrödinger Operator; Periodic Schrödinger Operator; Quantum Graphs; Non-linear Schrödinger Equation; References; Index.
Book Synopsis Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations by : Ping Zhang
Download or read book Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations written by Ping Zhang and published by American Mathematical Soc.. This book was released on with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrodinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrodinger-type equations." "At the end of each chapter, the reader will find references and remarks about recent progress on related problems. The book is self-contained and is suitable for an advanced graduate course on the topic."--BOOK JACKET.
Book Synopsis Discrete and Continuous Nonlinear Schrödinger Systems by : M. J. Ablowitz
Download or read book Discrete and Continuous Nonlinear Schrödinger Systems written by M. J. Ablowitz and published by Cambridge University Press. This book was released on 2004 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed mathematical analysis of scattering theory, obtains soliton solutions, and analyzes soliton interactions, both scalar and vector.
Book Synopsis Solving the Schrodinger Equation by : Paul L. A. Popelier
Download or read book Solving the Schrodinger Equation written by Paul L. A. Popelier and published by World Scientific. This book was released on 2011 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Schrodinger equation is the master equation of quantum chemistry. The founders of quantum mechanics realised how this equation underpins essentially the whole of chemistry. However, they recognised that its exact application was much too complicated to be solvable at the time. More than two generations of researchers were left to work out how to achieve this ambitious goal for molecular systems of ever-increasing size. This book focuses on non-mainstream methods to solve the molecular electronic Schrodinger equation. Each method is based on a set of core ideas and this volume aims to explain these ideas clearly so that they become more accessible. By bringing together these non-standard methods, the book intends to inspire graduate students, postdoctoral researchers and academics to think of novel approaches. Is there a method out there that we have not thought of yet? Can we design a new method that combines the best of all worlds?
Book Synopsis The Schrödinger Equation by : F.A. Berezin
Download or read book The Schrödinger Equation written by F.A. Berezin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with those topics of mathematical physics, associated with the study of the Schrödinger equation, which are considered to be the most important. Chapter 1 presents the basic concepts of quantum mechanics. Chapter 2 provides an introduction to the spectral theory of the one-dimensional Schrödinger equation. Chapter 3 opens with a discussion of the spectral theory of the multi-dimensional Schrödinger equation, which is a far more complex case and requires careful consideration of aspects which are trivial in the one-dimensional case. Chapter 4 presents the scattering theory for the multi-dimensional non-relativistic Schrödinger equation, and the final chapter is devoted to quantization and Feynman path integrals. These five main chapters are followed by three supplements, which present material drawn on in the various chapters. The first two supplements deal with general questions concerning the spectral theory of operators in Hilbert space, and necessary information relating to Sobolev spaces and elliptic equations. Supplement 3, which essentially stands alone, introduces the concept of the supermanifold which leads to a more natural treatment of quantization. Although written primarily for mathematicians who wish to gain a better awareness of the physical aspects of quantum mechanics and related topics, it will also be useful for mathematical physicists who wish to become better acquainted with the mathematical formalism of quantum mechanics. Much of the material included here has been based on lectures given by the authors at Moscow State University, and this volume can also be recommended as a supplementary graduate level introduction to the spectral theory of differential operators with both discrete and continuous spectra. This English edition is a revised, expanded version of the original Soviet publication.
Book Synopsis Fundamentals of Physics II by : R. Shankar
Download or read book Fundamentals of Physics II written by R. Shankar and published by Yale University Press. This book was released on 2016-01-01 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the fundamental concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Provides an introduction for college-level students of physics, chemistry, and engineering, for AP Physics students, and for general readers interested in advances in the sciences. In volume II, Shankar explains essential concepts, including electromagnetism, optics, and quantum mechanics. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics.
Book Synopsis A Student's Guide to the Schrödinger Equation by : Daniel A. Fleisch
Download or read book A Student's Guide to the Schrödinger Equation written by Daniel A. Fleisch and published by Cambridge University Press. This book was released on 2020-02-20 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.
Book Synopsis Regularity and Approximability of Electronic Wave Functions by : Harry Yserentant
Download or read book Regularity and Approximability of Electronic Wave Functions written by Harry Yserentant and published by Springer. This book was released on 2010-05-19 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electronic Schrodi ̈ nger equation describes the motion of N electrons under Coulomb interaction forces in a eld of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approxim- ing the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simpli ed models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to c- vince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a c- responding mathematical training.
Book Synopsis A Textbook of Physical Chemistry – Volume 1 by : Mandeep Dalal
Download or read book A Textbook of Physical Chemistry – Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Book Synopsis Classical and Multilinear Harmonic Analysis by : Camil Muscalu
Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Book Synopsis The Nonlinear Schrödinger Equation by : Catherine Sulem
Download or read book The Nonlinear Schrödinger Equation written by Catherine Sulem and published by Springer Science & Business Media. This book was released on 2007-06-30 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
Book Synopsis The Principles of Quantum Mechanics by : Paul Adrien Maurice Dirac
Download or read book The Principles of Quantum Mechanics written by Paul Adrien Maurice Dirac and published by Oxford University Press. This book was released on 1981 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
Book Synopsis Introduction to Quantum Mechanics by : David J. Griffiths
Download or read book Introduction to Quantum Mechanics written by David J. Griffiths and published by Cambridge University Press. This book was released on 2019-11-20 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.
Book Synopsis Lecture Notes in Applied Differential Equations of Mathematical Physics by : Luiz C. L. Botelho
Download or read book Lecture Notes in Applied Differential Equations of Mathematical Physics written by Luiz C. L. Botelho and published by World Scientific. This book was released on 2008 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic LangevinOCoturbulent partial differential equations.An errata II to the book is available. Click here to download the pdf.
Book Synopsis Introduction to Nonlinear Dispersive Equations by : Felipe Linares
Download or read book Introduction to Nonlinear Dispersive Equations written by Felipe Linares and published by Springer Science & Business Media. This book was released on 2009-02-21 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this textbook is to introduce the theory of nonlinear dispersive equations to graduate students in a constructive way. The first three chapters are dedicated to preliminary material, such as Fourier transform, interpolation theory and Sobolev spaces. The authors then proceed to use the linear Schrodinger equation to describe properties enjoyed by general dispersive equations. This information is then used to treat local and global well-posedness for the semi-linear Schrodinger equations. The end of each chapter contains recent developments and open problems, as well as exercises.
Book Synopsis Computational Quantum Mechanics by : Joshua Izaac
Download or read book Computational Quantum Mechanics written by Joshua Izaac and published by Springer. This book was released on 2019-02-15 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.