Learning Spark

Download Learning Spark PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492050016
Total Pages : 400 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Learning Spark by : Jules S. Damji

Download or read book Learning Spark written by Jules S. Damji and published by O'Reilly Media. This book was released on 2020-07-16 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Learning Spark

Download Learning Spark PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449359051
Total Pages : 289 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Learning Spark by : Holden Karau

Download or read book Learning Spark written by Holden Karau and published by "O'Reilly Media, Inc.". This book was released on 2015-01-28 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables

Advanced Analytics with Spark

Download Advanced Analytics with Spark PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912715
Total Pages : 290 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Advanced Analytics with Spark by : Sandy Ryza

Download or read book Advanced Analytics with Spark written by Sandy Ryza and published by "O'Reilly Media, Inc.". This book was released on 2015-04-02 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder

Spark in Action

Download Spark in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351309
Total Pages : 574 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Spark in Action by : Jean-Georges Perrin

Download or read book Spark in Action written by Jean-Georges Perrin and published by Simon and Schuster. This book was released on 2020-05-12 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary The Spark distributed data processing platform provides an easy-to-implement tool for ingesting, streaming, and processing data from any source. In Spark in Action, Second Edition, you’ll learn to take advantage of Spark’s core features and incredible processing speed, with applications including real-time computation, delayed evaluation, and machine learning. Spark skills are a hot commodity in enterprises worldwide, and with Spark’s powerful and flexible Java APIs, you can reap all the benefits without first learning Scala or Hadoop. Foreword by Rob Thomas. About the technology Analyzing enterprise data starts by reading, filtering, and merging files and streams from many sources. The Spark data processing engine handles this varied volume like a champ, delivering speeds 100 times faster than Hadoop systems. Thanks to SQL support, an intuitive interface, and a straightforward multilanguage API, you can use Spark without learning a complex new ecosystem. About the book Spark in Action, Second Edition, teaches you to create end-to-end analytics applications. In this entirely new book, you’ll learn from interesting Java-based examples, including a complete data pipeline for processing NASA satellite data. And you’ll discover Java, Python, and Scala code samples hosted on GitHub that you can explore and adapt, plus appendixes that give you a cheat sheet for installing tools and understanding Spark-specific terms. What's inside Writing Spark applications in Java Spark application architecture Ingestion through files, databases, streaming, and Elasticsearch Querying distributed datasets with Spark SQL About the reader This book does not assume previous experience with Spark, Scala, or Hadoop. About the author Jean-Georges Perrin is an experienced data and software architect. He is France’s first IBM Champion and has been honored for 12 consecutive years. Table of Contents PART 1 - THE THEORY CRIPPLED BY AWESOME EXAMPLES 1 So, what is Spark, anyway? 2 Architecture and flow 3 The majestic role of the dataframe 4 Fundamentally lazy 5 Building a simple app for deployment 6 Deploying your simple app PART 2 - INGESTION 7 Ingestion from files 8 Ingestion from databases 9 Advanced ingestion: finding data sources and building your own 10 Ingestion through structured streaming PART 3 - TRANSFORMING YOUR DATA 11 Working with SQL 12 Transforming your data 13 Transforming entire documents 14 Extending transformations with user-defined functions 15 Aggregating your data PART 4 - GOING FURTHER 16 Cache and checkpoint: Enhancing Spark’s performances 17 Exporting data and building full data pipelines 18 Exploring deployment

Mastering Apache Spark 2.x

Download Mastering Apache Spark 2.x PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178528522X
Total Pages : 345 pages
Book Rating : 4.7/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Mastering Apache Spark 2.x by : Romeo Kienzler

Download or read book Mastering Apache Spark 2.x written by Romeo Kienzler and published by Packt Publishing Ltd. This book was released on 2017-07-26 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced analytics on your Big Data with latest Apache Spark 2.x About This Book An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities. Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark. Master the art of real-time processing with the help of Apache Spark 2.x Who This Book Is For If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected. What You Will Learn Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames Learn how specific parameter settings affect overall performance of an Apache Spark cluster Leverage Scala, R and python for your data science projects In Detail Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform. The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x. You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets. You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks. Style and approach This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.

Spark: The Definitive Guide

Download Spark: The Definitive Guide PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912294
Total Pages : 594 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Spark: The Definitive Guide by : Bill Chambers

Download or read book Spark: The Definitive Guide written by Bill Chambers and published by "O'Reilly Media, Inc.". This book was released on 2018-02-08 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Machine Learning with Spark - Second Edition

Download Machine Learning with Spark - Second Edition PDF Online Free

Author :
Publisher :
ISBN 13 : 9781785889936
Total Pages : 572 pages
Book Rating : 4.8/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Spark - Second Edition by : Rajdeep Dua

Download or read book Machine Learning with Spark - Second Edition written by Rajdeep Dua and published by . This book was released on 2016-10-31 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2*Access public machine learning datasets and use Spark to load, process, clean, and transform data*Use Spark's machine learning library to implement programs by utilizing well-known machine learning models*Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models*Write Spark functions to evaluate the performance of your machine learning modelsIn DetailSpark ML is the machine learning module of Spark. It uses in-memory RDDs to process machine learning models faster for clustering, classification, and regression.This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.

Learning PySpark

Download Learning PySpark PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786466252
Total Pages : 273 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Learning PySpark by : Tomasz Drabas

Download or read book Learning PySpark written by Tomasz Drabas and published by Packt Publishing Ltd. This book was released on 2017-02-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.

High Performance Spark

Download High Performance Spark PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491943173
Total Pages : 356 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis High Performance Spark by : Holden Karau

Download or read book High Performance Spark written by Holden Karau and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues in Spark’s key/value pair paradigm Writing high-performance Spark code without Scala or the JVM How to test for functionality and performance when applying suggested improvements Using Spark MLlib and Spark ML machine learning libraries Spark’s Streaming components and external community packages

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119642191
Total Pages : 497 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Jason Bell

Download or read book Machine Learning written by Jason Bell and published by John Wiley & Sons. This book was released on 2020-02-17 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.

Mastering Spark with R

Download Mastering Spark with R PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492046329
Total Pages : 296 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Mastering Spark with R by : Javier Luraschi

Download or read book Mastering Spark with R written by Javier Luraschi and published by "O'Reilly Media, Inc.". This book was released on 2019-10-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions

Learning Spark SQL

Download Learning Spark SQL PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785887351
Total Pages : 445 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Learning Spark SQL by : Aurobindo Sarkar

Download or read book Learning Spark SQL written by Aurobindo Sarkar and published by Packt Publishing Ltd. This book was released on 2017-09-07 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing applications using Spark SQL APIs and Scala. Learn data exploration, data munging, and how to process structured and semi-structured data using real-world datasets and gain hands-on exposure to the issues and challenges of working with noisy and "dirty" real-world data. Understand design considerations for scalability and performance in web-scale Spark application architectures. Who This Book Is For If you are a developer, engineer, or an architect and want to learn how to use Apache Spark in a web-scale project, then this is the book for you. It is assumed that you have prior knowledge of SQL querying. A basic programming knowledge with Scala, Java, R, or Python is all you need to get started with this book. What You Will Learn Familiarize yourself with Spark SQL programming, including working with DataFrame/Dataset API and SQL Perform a series of hands-on exercises with different types of data sources, including CSV, JSON, Avro, MySQL, and MongoDB Perform data quality checks, data visualization, and basic statistical analysis tasks Perform data munging tasks on publically available datasets Learn how to use Spark SQL and Apache Kafka to build streaming applications Learn key performance-tuning tips and tricks in Spark SQL applications Learn key architectural components and patterns in large-scale Spark SQL applications In Detail In the past year, Apache Spark has been increasingly adopted for the development of distributed applications. Spark SQL APIs provide an optimized interface that helps developers build such applications quickly and easily. However, designing web-scale production applications using Spark SQL APIs can be a complex task. Hence, understanding the design and implementation best practices before you start your project will help you avoid these problems. This book gives an insight into the engineering practices used to design and build real-world, Spark-based applications. The book's hands-on examples will give you the required confidence to work on any future projects you encounter in Spark SQL. It starts by familiarizing you with data exploration and data munging tasks using Spark SQL and Scala. Extensive code examples will help you understand the methods used to implement typical use-cases for various types of applications. You will get a walkthrough of the key concepts and terms that are common to streaming, machine learning, and graph applications. You will also learn key performance-tuning details including Cost Based Optimization (Spark 2.2) in Spark SQL applications. Finally, you will move on to learning how such systems are architected and deployed for a successful delivery of your project. Style and approach This book is a hands-on guide to designing, building, and deploying Spark SQL-centric production applications at scale.

Hadoop in Practice

Download Hadoop in Practice PDF Online Free

Author :
Publisher : Manning Publications
ISBN 13 : 9781617292224
Total Pages : 512 pages
Book Rating : 4.2/5 (922 download)

DOWNLOAD NOW!


Book Synopsis Hadoop in Practice by : Alex Holmes

Download or read book Hadoop in Practice written by Alex Holmes and published by Manning Publications. This book was released on 2014-10-12 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Hadoop in Practice, Second Edition provides over 100 tested, instantly useful techniques that will help you conquer big data, using Hadoop. This revised new edition covers changes and new features in the Hadoop core architecture, including MapReduce 2. Brand new chapters cover YARN and integrating Kafka, Impala, and Spark SQL with Hadoop. You'll also get new and updated techniques for Flume, Sqoop, and Mahout, all of which have seen major new versions recently. In short, this is the most practical, up-to-date coverage of Hadoop available anywhere. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book It's always a good time to upgrade your Hadoop skills! Hadoop in Practice, Second Edition provides a collection of 104 tested, instantly useful techniques for analyzing real-time streams, moving data securely, machine learning, managing large-scale clusters, and taming big data using Hadoop. This completely revised edition covers changes and new features in Hadoop core, including MapReduce 2 and YARN. You'll pick up hands-on best practices for integrating Spark, Kafka, and Impala with Hadoop, and get new and updated techniques for the latest versions of Flume, Sqoop, and Mahout. In short, this is the most practical, up-to-date coverage of Hadoop available. Readers need to know a programming language like Java and have basic familiarity with Hadoop. What's Inside Thoroughly updated for Hadoop 2 How to write YARN applications Integrate real-time technologies like Storm, Impala, and Spark Predictive analytics using Mahout and RR Readers need to know a programming language like Java and have basic familiarity with Hadoop. About the Author Alex Holmes works on tough big-data problems. He is a software engineer, author, speaker, and blogger specializing in large-scale Hadoop projects. Table of Contents PART 1 BACKGROUND AND FUNDAMENTALS Hadoop in a heartbeat Introduction to YARN PART 2 DATA LOGISTICS Data serialization—working with text and beyond Organizing and optimizing data in HDFS Moving data into and out of Hadoop PART 3 BIG DATA PATTERNS Applying MapReduce patterns to big data Utilizing data structures and algorithms at scale Tuning, debugging, and testing PART 4 BEYOND MAPREDUCE SQL on Hadoop Writing a YARN application

Learning Spark

Download Learning Spark PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492049999
Total Pages : 390 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Learning Spark by : Jules S. Damji

Download or read book Learning Spark written by Jules S. Damji and published by "O'Reilly Media, Inc.". This book was released on 2020-07-16 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Stream Processing with Apache Spark

Download Stream Processing with Apache Spark PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491944196
Total Pages : 396 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Stream Processing with Apache Spark by : Gerard Maas

Download or read book Stream Processing with Apache Spark written by Gerard Maas and published by "O'Reilly Media, Inc.". This book was released on 2019-06-05 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before you can build analytics tools to gain quick insights, you first need to know how to process data in real time. With this practical guide, developers familiar with Apache Spark will learn how to put this in-memory framework to use for streaming data. You’ll discover how Spark enables you to write streaming jobs in almost the same way you write batch jobs. Authors Gerard Maas and François Garillot help you explore the theoretical underpinnings of Apache Spark. This comprehensive guide features two sections that compare and contrast the streaming APIs Spark now supports: the original Spark Streaming library and the newer Structured Streaming API. Learn fundamental stream processing concepts and examine different streaming architectures Explore Structured Streaming through practical examples; learn different aspects of stream processing in detail Create and operate streaming jobs and applications with Spark Streaming; integrate Spark Streaming with other Spark APIs Learn advanced Spark Streaming techniques, including approximation algorithms and machine learning algorithms Compare Apache Spark to other stream processing projects, including Apache Storm, Apache Flink, and Apache Kafka Streams

Spark the Brain, Ignite the Pen (SECOND EDITION)

Download Spark the Brain, Ignite the Pen (SECOND EDITION) PDF Online Free

Author :
Publisher : IAP
ISBN 13 : 1617353175
Total Pages : 241 pages
Book Rating : 4.6/5 (173 download)

DOWNLOAD NOW!


Book Synopsis Spark the Brain, Ignite the Pen (SECOND EDITION) by : Samuel Totten

Download or read book Spark the Brain, Ignite the Pen (SECOND EDITION) written by Samuel Totten and published by IAP. This book was released on 2009-04-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: A NEW emphasis IN THIS edition of Spark the Brain, Ignite the Pen is writing to learn in the content areas. This edition of the work first published in 2006 includes a collection of classroom-tested quick writes designed to assist students in thinking and writing about significant content in the disciplines. Contributors to the book teach a wide array of grade levels (K through college) and subject areas e.g., English, social studies, math, science and health), and the quick writes included in the book are ideal for use in a variety of classroom subjects and settings. Given the current research validating the impact of using writing tasks to learn content, this volume should be useful to a wide range of teachers, teacher educators, and professional development trainers K-12.

Cost-Effective Data Pipelines

Download Cost-Effective Data Pipelines PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492098604
Total Pages : 283 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Cost-Effective Data Pipelines by : Sev Leonard

Download or read book Cost-Effective Data Pipelines written by Sev Leonard and published by "O'Reilly Media, Inc.". This book was released on 2023-07-13 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: The low cost of getting started with cloud services can easily evolve into a significant expense down the road. That's challenging for teams developing data pipelines, particularly when rapid changes in technology and workload require a constant cycle of redesign. How do you deliver scalable, highly available products while keeping costs in check? With this practical guide, author Sev Leonard provides a holistic approach to designing scalable data pipelines in the cloud. Intermediate data engineers, software developers, and architects will learn how to navigate cost/performance trade-offs and how to choose and configure compute and storage. You'll also pick up best practices for code development, testing, and monitoring. By focusing on the entire design process, you'll be able to deliver cost-effective, high-quality products. This book helps you: Reduce cloud spend with lower cost cloud service offerings and smart design strategies Minimize waste without sacrificing performance by rightsizing compute resources Drive pipeline evolution, head off performance issues, and quickly debug with effective monitoring Set up development and test environments that minimize cloud service dependencies Create data pipeline code bases that are testable and extensible, fostering rapid development and evolution Improve data quality and pipeline operation through validation and testing