Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Large Scale Inhomogeneous Thermodynamics
Download Large Scale Inhomogeneous Thermodynamics full books in PDF, epub, and Kindle. Read online Large Scale Inhomogeneous Thermodynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Large-scale Inhomogeneous Thermodynamics by : Yong Zhu
Download or read book Large-scale Inhomogeneous Thermodynamics written by Yong Zhu and published by Cambridge Int Science Publishing. This book was released on 2003 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book introduces a new science, large-scale inhomogeneous thermodynamics, to study the inhomogeneous thermodynamic systems.
Book Synopsis A Different Thermodynamics and its True Heroes by : Evgeni B. Starikov
Download or read book A Different Thermodynamics and its True Heroes written by Evgeni B. Starikov and published by CRC Press. This book was released on 2019-04-01 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern thermodynamics is a unique but still not a logically self-consistent field of knowledge. It has a proven universal applicability and significance but its actual potential is still latent. The development of the foundations of thermodynamics was in effect non-stop but absolutely no one has any idea about this. This book is the first of its kind that will motivate researchers to build up a logically consistent field of thermodynamics. It greatly appreciates the actual depth and potential of thermodynamics which might also be of interest to readers in history and philosophy of scientific research. The book presents the life stories of the protagonists in detail and allows readers to cast a look at the whole scene of the field by showcasing a significant number of their colleagues whose works have fittingly complemented their achievements. It also tries to trigger a detailed analysis of the reasons why the actual work in this extremely important field has in effect gone astray. It comprises five chapters and introduces three scientists in the first two chapters, which are specifically devoted to the Scandinavian achievements in macroscopic thermodynamics. These introductions are novel and call for a detailed reconsideration of the field. The third chapter acquaints the readers with their fourth colleague in Germany who was working on the proper link between the macroscopic thermodynamics, kinetics, and the atomistic representation of matter. The fourth chapter brings in their fifth colleague in the United States who could formally infer the famous formula S = k * ln(W), ingeniously guessed by Ludwig Boltzmann, and thus clarify the physical sense of the entropy notion. The last chapter summarizes the above-mentioned discourses.
Book Synopsis Encyclopedia of Climate and Weather by : Dr. Stephen H. Schneider
Download or read book Encyclopedia of Climate and Weather written by Dr. Stephen H. Schneider and published by Oxford University Press. This book was released on 2011-06-09 with total page 1478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume A-to-Z compendium consists of over 300 entries written by a team of leading international scholars and researchers working in the field. Authoritative and up-to-date, the encyclopedia covers the processes that produce our weather, important scientific concepts, the history of ideas underlying the atmospheric sciences, biographical accounts of those who have made significant contributions to climatology and meteorology and particular weather events, from extreme tropical cyclones and tornadoes to local winds.
Book Synopsis Perturbation Theories for the Thermodynamic Properties of Fluids and Solids by : J. R. Solana
Download or read book Perturbation Theories for the Thermodynamic Properties of Fluids and Solids written by J. R. Solana and published by CRC Press. This book was released on 2013-03-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation theory forms an important basis for predicting the thermodynamic characteristics of real fluids and solids. This book provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the book avoids complex theoretical derivations as much as possible. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.
Book Synopsis Molecular Thermodynamics of Complex Systems by : Xiaohua Lu
Download or read book Molecular Thermodynamics of Complex Systems written by Xiaohua Lu and published by Springer Science & Business Media. This book was released on 2009 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Molecular Thermodynamics of Complex Systems, the chapter authors critically examine not only the current state of the art in chemical research into structure and bonding, but also look at the direction the subject might take as it develops in future years.
Book Synopsis Atmospheric Circulation Dynamics and General Circulation Models by : Masaki Satoh
Download or read book Atmospheric Circulation Dynamics and General Circulation Models written by Masaki Satoh and published by Springer Science & Business Media. This book was released on 2013-07-04 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.
Book Synopsis Atmospheric Circulation Dynamics and Circulation Models by : Masaki Satoh
Download or read book Atmospheric Circulation Dynamics and Circulation Models written by Masaki Satoh and published by Springer Science & Business Media. This book was released on 2004-05-03 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the methods used to construct general circulation models of the atmosphere, and how such models perform in applications relating to the real climate and environmental systems. The author describes the fundamental dynamics of the atmospheric circulation, modelling of the general circulation, and applications of GCMs. The book consists of three parts: - Part 1 summarizes the physical processes involved, including basic equations, waves and instabilities; - Part 2 covers atmospheric structures, including various types of one- and two-dimensional structures and circulations; - Part 3 describes the basic notions for construction of general circulation models of the atmosphere and their applications. Atmospheric Circulation Dynamics and General Circulation Methods includes an appendix incorporating the basic data and mathematical formulae required to enable readers to construct GCMs for themselves.
Book Synopsis Remote Sensing of Turbulence by : Victor Raizer
Download or read book Remote Sensing of Turbulence written by Victor Raizer and published by CRC Press. This book was released on 2021-10-03 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.
Book Synopsis Thermodynamic Approaches in Engineering Systems by : Stanislaw Sieniutycz
Download or read book Thermodynamic Approaches in Engineering Systems written by Stanislaw Sieniutycz and published by Elsevier. This book was released on 2016-05-20 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. - Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion - Written by a first-class expert in the field of advanced methods in thermodynamics - Provides a synthesis of recent thermodynamic developments in practical systems - Presents very elaborate literature discussions from the past fifty years
Book Synopsis Fundamentals of Inhomogeneous Fluids by : Douglas Henderson
Download or read book Fundamentals of Inhomogeneous Fluids written by Douglas Henderson and published by CRC Press. This book was released on 2021-12-17 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: A monograph examining recent progress in the field of inhomogeneous fluids, focusing on the theoretical - as well as experimental - techniques used. It presents the comprehensive theory of first-order phase transitions, including melting, and contains numerous figures, tables and display equations.;The contributors treat such subjects as: exact sum rules for inhomogenous fluids, explaining density functional and integral equation methods; exact solutions for two-dimensional homogeneous and inhomogeneous plasmas; current advances in the theory of interfacial electrochemistry; wetting experiments and the theory of wetting; freezing, with an emphasis on quantum systems and homogeneous nucleation in liquid-vapour and solid-liquid transitions; self-organizing liquids as well as kinetic phenomena in inhomogeneous fluids, using a modified Enskog theory.;Featuring over 1000 bibliographic citations, this volume is aimed at physical, surface, colloid and surfactant chemists; also physicists, electrochemists and graduate-level students in these disciplines.
Download or read book Thermodynamics written by Antonio Saggion and published by Springer Nature. This book was released on 2019-10-15 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive overview of thermodynamics. It is divided into four parts, the first of which equips readers with a deeper understanding of the fundamental principles of thermodynamics of equilibrium states and of their evolution. The second part applies these principles to a series of generalized situations, presenting applications that are of interest both in their own right and in terms of demonstrating how thermodynamics, as a theory of principle, relates to different fields. In turn, the third part focuses on non-equilibrium configurations and the dynamics of natural processes. It discusses both discontinuous and continuous systems, highlighting the interference among non-equilibrium processes, and the nature of stationary states and of fluctuations in isolated systems. Lastly, part four introduces the relation between physics and information theory, which constitutes a new frontier in fundamental research. The book includes step-by-step exercises, with solutions, to help readers to gain a fuller understanding of the subjects, and also features a series of appendices providing useful mathematical formulae. Reflecting the content of modern university courses on thermodynamics, it is a valuable resource for students and young scientists in the fields of physics, chemistry, and engineering.
Download or read book Amber 2023 written by David A. Case and published by University of California, San Francisco. This book was released on 2023-04-30 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations.[1, 2] The term Amber is also used to refer to the empirical force fields that are implemented here.[3, 4] It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the codes are distributed under a license agreement. The Amber software suite is divided into two parts: AmberTools23, a collection of freely available programs mostly under the GPL license, and Amber22, which is centered around the pmemd simulation program, and which continues to be licensed as before, under a more restrictive license. Amber22 represents a significant change from the most recent previous version, Amber20. (We have moved to numbering Amber releases by the last two digits of the calendar year, so there are no odd-numbered versions.) Please see https://ambermd.org for an overview of the most important changes. AmberTools is a set of programs for biomolecular simulation and analysis. They are designed to work well with each other, and with the “regular” Amber suite of programs. You can perform many simulation tasks with AmberTools, and you can do more extensive simulations with the combination of AmberTools and Amber itself. Most components of AmberTools are released under the GNU General Public License (GPL). A few components are in the public domain or have other open-source licenses. See the README file for more information.
Book Synopsis Microcanonical Thermodynamics by : Dieter H. E. Gross
Download or read book Microcanonical Thermodynamics written by Dieter H. E. Gross and published by World Scientific. This book was released on 2001 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boltzmann's formula S = In(W(E) defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a price to pay -- for example, phase transitions can only be defined in the thermodynamic limit of infinite system size. The question how phase transitions show up from systems with, say, 100 particles with an increasing number towards the bulk can only be answered when one finds a way to define and classify phase transitions in small systems. This is all possible within Boltzmann's original definition of the microcanonical ensemble. Starting from Boltzmann's formula, the book formulates the microcanonical thermodynamics entirely within the frame of mechanics. This way the thermodynamic limit is avoided and the formalism applies to small as well to other nonextensive systems like gravitational ones. Phasetransitions of first order, continuous transitions, critical lines and multicritical points can be unambiguously defined by the curvature of the entropy S(E, N). Special attention is given to the fragmentation of nuclei and atomic clusters as a peculiar phase transition of small systems controlled, among others, by angular momentum. The dependence of the liquid-gas transition of small atomic clusters under prescribed pressure is treated. Thus the analogue to the bulk transition can be studied. New insights into the many facets of the many-body physics of the critical point are presented. The book also describes the microcanonical statistics of the collapse of a self-gravitating system under large angular momentum.
Book Synopsis Polymer Science: A Comprehensive Reference by :
Download or read book Polymer Science: A Comprehensive Reference written by and published by Newnes. This book was released on 2012-12-05 with total page 7752 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)
Book Synopsis An Introduction to Thermodynamics and Statistical Physics by : Piero Olla
Download or read book An Introduction to Thermodynamics and Statistical Physics written by Piero Olla and published by Springer. This book was released on 2014-08-13 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an advanced undergraduate or initial graduate level introduction to topics such as kinetic theory, equilibrium statistical mechanics and the theory of fluctuations from a modern perspective. The aim is to provide the reader with the necessary tools of probability theory and thermodynamics (especially the thermodynamic potentials) to enable subsequent study at advanced graduate level. At the same time, the book offers a bird's eye view on arguments that are often disregarded in the main curriculum courses. Further features include a focus on the interdisciplinary nature of the subject and in-depth discussion of alternative interpretations of the concept of entropy. While some familiarity with basic concepts of thermodynamics and probability theory is assumed, this does not extend beyond what is commonly obtained in basic undergraduate curriculum courses.
Download or read book Amber 2022 written by David A. Case and published by University of California, San Francisco. This book was released on 2022-04-28 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations. The term Amber is also used to refer to the empirical force fields that are implemented here. It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the codes are distributed under a license agreement. The Amber software suite is divided into two parts: AmberTools22, a collection of freely available programs mostly under the GPL license, and Amber22, which is centered around the pmemd simulation program, and which continues to be licensed as before, under a more restrictive license. Amber22 represents a significant change from the most recent previous version, Amber20. (We have moved to numbering Amber releases by the last two digits of the calendar year, so there are no odd-numbered versions.) Please see https://ambermd.org for an overview of the most important changes. AmberTools is a set of programs for biomolecular simulation and analysis. They are designed to work well with each other, and with the “regular” Amber suite of programs. You can perform many simulation tasks with AmberTools, and you can do more extensive simulations with the combination of AmberTools and Amber itself. Most components of AmberTools are released under the GNU General Public License (GPL). A few components are in the public domain or have other open-source licenses. See the README file for more information.
Download or read book Monthly Weather Review written by and published by . This book was released on 1980 with total page 1324 pages. Available in PDF, EPUB and Kindle. Book excerpt: