Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Knowledge Representation Techniques
Download Knowledge Representation Techniques full books in PDF, epub, and Kindle. Read online Knowledge Representation Techniques ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Knowledge Representation and Reasoning by : Ronald Brachman
Download or read book Knowledge Representation and Reasoning written by Ronald Brachman and published by Morgan Kaufmann. This book was released on 2004-05-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.
Book Synopsis Knowledge Representation, Reasoning, and the Design of Intelligent Agents by : Michael Gelfond
Download or read book Knowledge Representation, Reasoning, and the Design of Intelligent Agents written by Michael Gelfond and published by Cambridge University Press. This book was released on 2014-03-10 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.
Book Synopsis Semantic Networks in Artificial Intelligence by : Fritz W. Lehmann
Download or read book Semantic Networks in Artificial Intelligence written by Fritz W. Lehmann and published by Pergamon. This book was released on 1992 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. Semantic Networks are graphic structures used to represent concepts and knowledge in computers. Key uses include natural language understanding, information retrieval, machine vision, object-oriented analysis and dynamic control of combat aircraft. This major collection addresses every level of reader interested in the field of knowledge representation. Easy to read surveys of the main research families, most written by the founders, are followed by 25 widely varied articles on semantic networks and the conceptual structure of the world. Some extend ideas of philosopher Charles S Peirce 100 years ahead of his time. Others show connections to databases, lattice theory, semiotics, real-world ontology, graph-grammers, lexicography, relational algebras, property inheritance and semantic primitives. Hundreds of pictures show semantic networks as a visual language of thought.
Book Synopsis Knowledge Representation Techniques by : Patrick Doherty
Download or read book Knowledge Representation Techniques written by Patrick Doherty and published by Springer. This book was released on 2007-05-31 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a cohesive, self-contained collection of theoretical and applied research results that have been achieved in this project which pertain to nonmonotonic and approximate easoning systems developed for an experimental unmanned aerial vehicle system used in the project. This book should be of interest to the theoretician and applied researcher alike and to autonomous system developers and software agent and intelligent system developers.
Book Synopsis Foundations of Biomedical Knowledge Representation by : Arjen Hommersom
Download or read book Foundations of Biomedical Knowledge Representation written by Arjen Hommersom and published by Springer. This book was released on 2016-01-07 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medicine and health care are currently faced with a significant rise in their complexity. This is partly due to the progress made during the past three decades in the fundamental biological understanding of the causes of health and disease at the molecular, (sub)cellular, and organ level. Since the end of the 1970s, when knowledge representation and reasoning in the biomedical field became a separate area of research, huge progress has been made in the development of methods and tools that are finally able to impact on the way medicine is being practiced. Even though there are huge differences in the techniques and methods used by biomedical researchers, there is now an increasing tendency to share research results in terms of formal knowledge representation methods, such as ontologies, statistical models, network models, and mathematical models. As there is an urgent need for health-care professionals to make better decisions, computer-based support using this knowledge is now becoming increasingly important. It may also be the only way to integrate research results from the different parts of the spectrum of biomedical and clinical research. The aim of this book is to shed light on developments in knowledge representation at different levels of biomedical application, ranging from human biology to clinical guidelines, and using different techniques, from probability theory and differential equations to logic. The book starts with two introductory chapters followed by 18 contributions organized in the following topical sections: diagnosis of disease; monitoring of health and disease and conformance; assessment of health and personalization; prediction and prognosis of health and disease; treatment of disease; and recommendations.
Book Synopsis Knowledge Representation by : Arthur B. Markman
Download or read book Knowledge Representation written by Arthur B. Markman and published by Psychology Press. This book was released on 2013-06-17 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge representation is fundamental to the study of mind. All theories of psychological processing are rooted in assumptions about how information is stored. These assumptions, in turn, influence the explanatory power of theories. This book fills a gap in the existing literature by providing an overview of types of knowledge representation techniques and their use in cognitive models. Organized around types of representations, this book begins with a discussion of the foundations of knowledge representation, then presents discussions of different ways that knowledge representation has been used. Both symbolic and connectionist approaches to representation are discussed and a set of recommendations about the way representations should be used is presented. This work can be used as the basis for a course on knowledge representation or can be read independently. It will be useful to students of psychology as well as people in related disciplines--computer science, philosophy, anthropology, and linguistics--who want an introduction to techniques for knowledge representation.
Book Synopsis Prediction and Analysis for Knowledge Representation and Machine Learning by : Avadhesh Kumar
Download or read book Prediction and Analysis for Knowledge Representation and Machine Learning written by Avadhesh Kumar and published by CRC Press. This book was released on 2022-01-31 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which include both basic and advanced concepts.
Book Synopsis Handbook of Knowledge Representation by : Frank van Harmelen
Download or read book Handbook of Knowledge Representation written by Frank van Harmelen and published by Elsevier. This book was released on 2008-01-08 with total page 1035 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily
Book Synopsis Representation Learning for Natural Language Processing by : Zhiyuan Liu
Download or read book Representation Learning for Natural Language Processing written by Zhiyuan Liu and published by Springer Nature. This book was released on 2020-07-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Book Synopsis Handbook of Research on Computational Intelligence Applications in Bioinformatics by : Dash, Sujata
Download or read book Handbook of Research on Computational Intelligence Applications in Bioinformatics written by Dash, Sujata and published by IGI Global. This book was released on 2016-06-20 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.
Book Synopsis Logic-based Knowledge Representation by : Peter Jackson
Download or read book Logic-based Knowledge Representation written by Peter Jackson and published by Mit Press. This book was released on 1989 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the building of expert systems using logic for knowledge representation and meta-level inference for control. It presents research done by members of the expert systems group of the Department of Artificial Intelligence in Edinburgh, often in collaboration with others, based on two hypotheses: that logic is a suitable knowledge representation language, and that an explicit representation of the control regime of the theorem prover has many advantages. The editors introduce these hypotheses and present the arguments in their favor They then describe Socrates' a tool for the construction of expert systems that is based on these assumptions. They devote the remaining chapters to the solution of problems that arise from the restrictions imposed by Socrates's representation language and from the system's inefficiency. The chapters dealing with the representation problem present a reified approach to temporal logic that makes it possible to use nonstandard logics without extending the system, and describe a general proof method for arbitrary modal logics. Those dealing with the efficiency problem discuss the technique of partial evaluation and its limitations, as well as another possible solution known as assertion-time inference. Peter Jackson is a Senior Scientist in the Department of Applied Mathematics and Computer Sciences at the McDonnell Douglas Research Laboratory in St. Louis. Han Reichgelt is a Lecturer in Department of Psychology at the University of Nottingham. Frank van Harmelen is a Research Fellow in the Mathematical Reasoning Group at the University of Edinburgh.
Book Synopsis Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges by : I. Tiddi
Download or read book Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges written by I. Tiddi and published by IOS Press. This book was released on 2020-05-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Book Synopsis Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh by : George J Klir
Download or read book Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh written by George J Klir and published by World Scientific. This book was released on 1996-05-30 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Book Synopsis Representations of Commonsense Knowledge by : Ernest Davis
Download or read book Representations of Commonsense Knowledge written by Ernest Davis and published by Morgan Kaufmann. This book was released on 2014-07-10 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representations of Commonsense Knowledge provides a rich language for expressing commonsense knowledge and inference techniques for carrying out commonsense knowledge. This book provides a survey of the research on commonsense knowledge. Organized into 10 chapters, this book begins with an overview of the basic ideas on artificial intelligence commonsense reasoning. This text then examines the structure of logic, which is roughly analogous to that of a programming language. Other chapters describe how rules of universal validity can be applied to facts known with absolute certainty to deduce other facts known with absolute certainty. This book discusses as well some prominent issues in plausible inference. The final chapter deals with commonsense knowledge about the interrelations and interactions among agents and discusses some issues in human and social interactions that have been studied in the artificial intelligence literature. This book is a valuable resource for students on a graduate course on knowledge representation.
Book Synopsis The Handbook of Artificial Intelligence by : Avron Barr
Download or read book The Handbook of Artificial Intelligence written by Avron Barr and published by Butterworth-Heinemann. This book was released on 2014-05-12 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine and education, including ICAI systems design, intelligent CAI systems, medical systems, and other applications of AI to education. The manuscript explores automatic programming, as well as the methods of program specification, basic approaches, and automatic programming systems. The book is a valuable source of data for computer science experts and researchers interested in conducting further research in artificial intelligence.
Book Synopsis Knowledge Graphs by : Mayank Kejriwal
Download or read book Knowledge Graphs written by Mayank Kejriwal and published by MIT Press. This book was released on 2021-03-30 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.
Book Synopsis Advancements in Model-Driven Architecture in Software Engineering by : Rhazali, Yassine
Download or read book Advancements in Model-Driven Architecture in Software Engineering written by Rhazali, Yassine and published by IGI Global. This book was released on 2020-09-18 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integral element of software engineering is model engineering. They both endeavor to minimize cost, time, and risks with quality software. As such, model engineering is a highly useful field that demands in-depth research on the most current approaches and techniques. Only by understanding the most up-to-date research can these methods reach their fullest potential. Advancements in Model-Driven Architecture in Software Engineering is an essential publication that prepares readers to exercise modeling and model transformation and covers state-of-the-art research and developments on various approaches for methodologies and platforms of model-driven architecture, applications and software development of model-driven architecture, modeling languages, and modeling tools. Highlighting a broad range of topics including cloud computing, service-oriented architectures, and modeling languages, this book is ideally designed for engineers, programmers, software designers, entrepreneurs, researchers, academicians, and students.