Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Knowledge Incorporation In Evolutionary Computation
Download Knowledge Incorporation In Evolutionary Computation full books in PDF, epub, and Kindle. Read online Knowledge Incorporation In Evolutionary Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Knowledge Incorporation in Evolutionary Computation by : Yaochu Jin
Download or read book Knowledge Incorporation in Evolutionary Computation written by Yaochu Jin and published by Springer. This book was released on 2013-04-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Book Synopsis Evolutionary Multiobjective Optimization by : Ajith Abraham
Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.
Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas
Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Book Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello
Download or read book Evolutionary Algorithms for Solving Multi-Objective Problems written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Book Synopsis Evolutionary Optimization Algorithms by : Dan Simon
Download or read book Evolutionary Optimization Algorithms written by Dan Simon and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Book Synopsis Evolutionary Computation in Bioinformatics by : Gary B. Fogel
Download or read book Evolutionary Computation in Bioinformatics written by Gary B. Fogel and published by Elsevier. This book was released on 2002-09-27 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.
Book Synopsis Introduction to Evolutionary Computing by : A.E. Eiben
Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Book Synopsis Handbook of AI-based Metaheuristics by : Anand J. Kulkarni
Download or read book Handbook of AI-based Metaheuristics written by Anand J. Kulkarni and published by CRC Press. This book was released on 2021-09-01 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.
Book Synopsis Neural Information Processing by : Chi-Sing Leung
Download or read book Neural Information Processing written by Chi-Sing Leung and published by Springer. This book was released on 2009-12-15 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: th This two-volume set constitutes the Proceedings of the 16 International Conference on Neural Information Processing (ICONIP 2009), held in Bangkok, Thailand, during December 1–5, 2009. ICONIP is a world-renowned international conference that is held annually in the Asia-Pacific region. This prestigious event is sponsored by the Asia Pacific Neural Network Assembly (APNNA), and it has provided an annual forum for international researchers to exchange the latest ideas and advances in neural networks and related discipline. The School of Information Technology (SIT) at King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand was the proud host of ICONIP 2009. The conference theme was “Challenges and Trends of Neural Information Processing,” with an aim to discuss the past, present, and future challenges and trends in the field of neural information processing. ICONIP 2009 accepted 145 regular session papers and 53 special session papers from a total of 466 submissions received on the Springer Online Conference Service (OCS) system. The authors of accepted papers alone covered 36 countries and - gions worldwide and there are over 500 authors in these proceedings. The technical sessions were divided into 23 topical categories, including 9 special sessions.
Book Synopsis PRICAI 2006: Trends in Artificial Intelligence by : Quiang Yang
Download or read book PRICAI 2006: Trends in Artificial Intelligence written by Quiang Yang and published by Springer. This book was released on 2008-02-20 with total page 1291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, held in Guilin, China in August 2006. The book presents 81 revised full papers and 87 revised short papers together with 3 keynote talks. The papers are organized in topical sections on intelligent agents, automated reasoning, machine learning and data mining, natural language processing and speech recognition, computer vision, perception and animation, and more.
Book Synopsis Pattern Recognition in Bioinformatics by : Jagath C.- Rajapakse
Download or read book Pattern Recognition in Bioinformatics written by Jagath C.- Rajapakse and published by Springer. This book was released on 2007-09-19 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the International Workshop on Pattern Recognition in Bioinformatics, PRIB 2007, held in Singapore in October 2007. The 38 revised full papers presented were carefully reviewed and selected from 125 submissions. The papers discuss the applications of pattern recognition methods in the field of bioinformatics to solve problems in life sciences.
Book Synopsis Multiobjective Problem Solving from Nature by : Joshua Knowles
Download or read book Multiobjective Problem Solving from Nature written by Joshua Knowles and published by Springer Science & Business Media. This book was released on 2008-01-28 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.
Book Synopsis Bio-Inspired Systems: Computational and Ambient Intelligence by : Joan Cabestany
Download or read book Bio-Inspired Systems: Computational and Ambient Intelligence written by Joan Cabestany and published by Springer Science & Business Media. This book was released on 2009-06-08 with total page 1403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, held in Salamanca, Spain in June 2009. The 167 revised full papers presented together with 3 invited lectures were carefully reviewed and selected from over 230 submissions. The papers are organized in thematic sections on theoretical foundations and models; learning and adaptation; self-organizing networks, methods and applications; fuzzy systems; evolutionary computation and genetic algoritms; pattern recognition; formal languages in linguistics; agents and multi-agent on intelligent systems; brain-computer interfaces (bci); multiobjetive optimization; robotics; bioinformatics; biomedical applications; ambient assisted living (aal) and ambient intelligence (ai); other applications.
Book Synopsis Cultural Algorithms by : Shahin Jalili
Download or read book Cultural Algorithms written by Shahin Jalili and published by Springer Nature. This book was released on 2022-11-24 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the latest advances in Cultural Algorithms, their general framework, different variants, hybridized versions with other meta-heuristic and search techniques, and their applications. Cultural Algorithms are meta-heuristic numerical optimization techniques inspired by the bio-cultural evolutionary theory, in which both types of vertical and horizontal learning behaviors are modeled. The book includes well-briefed basics of optimization and theoretical backgrounds of Cultural Algorithms in its initial chapters and then discusses their applications in different branches of science and engineering. It provides detailed mathematical formulations and algorithmic pseudo-codes of hybridized, extended, and multi-population variants of cultural algorithms. The book will serve the research students, fellows, professors, and industry professionals to implement real-time applications of Cultural Algorithms.
Book Synopsis Computational Intelligence - Volume II by : Hisao Ishibuchi
Download or read book Computational Intelligence - Volume II written by Hisao Ishibuchi and published by EOLSS Publications. This book was released on 2015-12-30 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational intelligence is a component of Encyclopedia of Technology, Information, and Systems Management Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Computational intelligence is a rapidly growing research field including a wide variety of problem-solving techniques inspired by nature. Traditionally computational intelligence consists of three major research areas: Neural Networks, Fuzzy Systems, and Evolutionary Computation. Neural networks are mathematical models inspired by brains. Neural networks have massively parallel network structures with many neurons and weighted connections. Whereas each neuron has a simple input-output relation, a neural network with many neurons can realize a highly non-linear complicated mapping. Connection weights between neurons can be adjusted in an automated manner by a learning algorithm to realize a non-linear mapping required in a particular application task. Fuzzy systems are mathematical models proposed to handle inherent fuzziness in natural language. For example, it is very difficult to mathematically define the meaning of “cold” in everyday conversations such as “It is cold today” and “Can I have cold water”. The meaning of “cold” may be different in a different situation. Even in the same situation, a different person may have a different meaning. Fuzzy systems offer a mathematical mechanism to handle inherent fuzziness in natural language. As a result, fuzzy systems have been successfully applied to real-world problems by extracting linguistic knowledge from human experts in the form of fuzzy IF-THEN rules. Evolutionary computation includes various population-based search algorithms inspired by evolution in nature. Those algorithms usually have the following three mechanisms: fitness evaluation to measure the quality of each solution, selection to choose good solutions from the current population, and variation operators to generate offspring from parents. Evolutionary computation has high applicability to a wide range of optimization problems with different characteristics since it does not need any explicit mathematical formulations of objective functions. For example, simulation-based fitness evaluation is often used in evolutionary design. Subjective fitness evaluation by a human user is also often used in evolutionary art and music. These volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers.
Book Synopsis Applications of Computational Intelligence in Biology by : Tomasz G. Smolinski
Download or read book Applications of Computational Intelligence in Biology written by Tomasz G. Smolinski and published by Springer Science & Business Media. This book was released on 2008-06-10 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence (CI) has been a tremendously active area of - search for the past decade or so. There are many successful applications of CI in many sub elds of biology, including bioinformatics, computational - nomics, protein structure prediction, or neuronal systems modeling and an- ysis. However, there still are many open problems in biology that are in d- perate need of advanced and e cient computational methodologies to deal with tremendous amounts of data that those problems are plagued by. - fortunately, biology researchers are very often unaware of the abundance of computational techniques that they could put to use to help them analyze and understand the data underlying their research inquiries. On the other hand, computational intelligence practitioners are often unfamiliar with the part- ular problems that their new, state-of-the-art algorithms could be successfully applied for. The separation between the two worlds is partially caused by the use of di erent languages in these two spheres of science, but also by the relatively small number of publications devoted solely to the purpose of fac- itating the exchange of new computational algorithms and methodologies on one hand, and the needs of the biology realm on the other. The purpose of this book is to provide a medium for such an exchange of expertise and concerns. In order to achieve the goal, we have solicited cont- butions from both computational intelligence as well as biology researchers.
Book Synopsis Computational Intelligence by : Russell C. Eberhart
Download or read book Computational Intelligence written by Russell C. Eberhart and published by Elsevier. This book was released on 2011-04-18 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study