Kernel Smoothing in MATLAB

Download Kernel Smoothing in MATLAB PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814405485
Total Pages : 242 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing in MATLAB by : Ivana Horová

Download or read book Kernel Smoothing in MATLAB written by Ivana Horová and published by World Scientific. This book was released on 2012 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Offers a comprehensive overview of statistical theory and emphases the implementation of presented methods in Matlab. This title contains various Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density.

Kernel Smoothing In Matlab: Theory And Practice Of Kernel Smoothing

Download Kernel Smoothing In Matlab: Theory And Practice Of Kernel Smoothing PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814405507
Total Pages : 242 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing In Matlab: Theory And Practice Of Kernel Smoothing by : Ivanka Horova

Download or read book Kernel Smoothing In Matlab: Theory And Practice Of Kernel Smoothing written by Ivanka Horova and published by World Scientific. This book was released on 2012-08-14 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density. Specifically, methods for choosing a choice of the optimal bandwidth and a special procedure for simultaneous choice of the bandwidth, the kernel and its order are implemented. The toolbox is divided into six parts according to the chapters of the book.All scripts are included in a user interface and it is easy to manipulate with this interface. Each chapter of the book contains a detailed help for the related part of the toolbox too. This book is intended for newcomers to the field of smoothing techniques and would also be appropriate for a wide audience: advanced graduate, PhD students and researchers from both the statistical science and interface disciplines.

Multivariate Kernel Smoothing and Its Applications

Download Multivariate Kernel Smoothing and Its Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429939140
Total Pages : 226 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón

Download or read book Multivariate Kernel Smoothing and Its Applications written by José E. Chacón and published by CRC Press. This book was released on 2018-05-08 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.

Nonparametric Kernel Density Estimation and Its Computational Aspects

Download Nonparametric Kernel Density Estimation and Its Computational Aspects PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319716883
Total Pages : 197 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Kernel Density Estimation and Its Computational Aspects by : Artur Gramacki

Download or read book Nonparametric Kernel Density Estimation and Its Computational Aspects written by Artur Gramacki and published by Springer. This book was released on 2017-12-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.

Composing Fisher Kernels from Deep Neural Models

Download Composing Fisher Kernels from Deep Neural Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319985248
Total Pages : 69 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Composing Fisher Kernels from Deep Neural Models by : Tayyaba Azim

Download or read book Composing Fisher Kernels from Deep Neural Models written by Tayyaba Azim and published by Springer. This book was released on 2018-08-23 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows machine learning enthusiasts and practitioners how to get the best of both worlds by deriving Fisher kernels from deep learning models. In addition, the book shares insight on how to store and retrieve large-dimensional Fisher vectors using feature selection and compression techniques. Feature selection and feature compression are two of the most popular off-the-shelf methods for reducing data’s high-dimensional memory footprint and thus making it suitable for large-scale visual retrieval and classification. Kernel methods long remained the de facto standard for solving large-scale object classification tasks using low-level features, until the revival of deep models in 2006. Later, they made a comeback with improved Fisher vectors in 2010. However, their supremacy was always challenged by various versions of deep models, now considered to be the state of the art for solving various machine learning and computer vision tasks. Although the two research paradigms differ significantly, the excellent performance of Fisher kernels on the Image Net large-scale object classification dataset has caught the attention of numerous kernel practitioners, and many have drawn parallels between the two frameworks for improving the empirical performance on benchmark classification tasks. Exploring concrete examples on different data sets, the book compares the computational and statistical aspects of different dimensionality reduction approaches and identifies metrics to show which approach is superior to the other for Fisher vector encodings. It also provides references to some of the most useful resources that could provide practitioners and machine learning enthusiasts a quick start for learning and implementing a variety of deep learning models and kernel functions.

Safety and Reliability. Theory and Applications

Download Safety and Reliability. Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351809733
Total Pages : 3668 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Safety and Reliability. Theory and Applications by : Marko Cepin

Download or read book Safety and Reliability. Theory and Applications written by Marko Cepin and published by CRC Press. This book was released on 2017-06-14 with total page 3668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.

Nanoelectronic Coupled Problems Solutions

Download Nanoelectronic Coupled Problems Solutions PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030307263
Total Pages : 587 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Nanoelectronic Coupled Problems Solutions by : E. Jan W. ter Maten

Download or read book Nanoelectronic Coupled Problems Solutions written by E. Jan W. ter Maten and published by Springer Nature. This book was released on 2019-11-06 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.

Nonparametric Statistics for Health Care Research

Download Nonparametric Statistics for Health Care Research PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1483313093
Total Pages : 473 pages
Book Rating : 4.4/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Statistics for Health Care Research by : Marjorie A. Pett

Download or read book Nonparametric Statistics for Health Care Research written by Marjorie A. Pett and published by SAGE Publications. This book was released on 2015-06-29 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: What do you do when you realize that the data set from the study that you have just completed violates the sample size or other requirements needed to apply parametric statistics? Nonparametric Statistics for Health Care Research by Marjorie A. Pett was developed for such scenarios—research undertaken with limited funds, often using a small sample size, with the primary objective of improving client care and obtaining better client outcomes. Covering the most commonly used nonparametric statistical techniques available in statistical packages and on open-resource statistical websites, this well-organized and accessible Second Edition helps readers, including those beyond the health sciences field, to understand when to use a particular nonparametric statistic, how to generate and interpret the resulting computer printouts, and how to present the results in table and text format.

Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis

Download Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303163053X
Total Pages : 309 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis by : Erik Cuevas

Download or read book Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis written by Erik Cuevas and published by Springer Nature. This book was released on with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Statistics Handbook with MATLAB

Download Computational Statistics Handbook with MATLAB PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420010867
Total Pages : 794 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics Handbook with MATLAB by : Wendy L. Martinez

Download or read book Computational Statistics Handbook with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2007-12-20 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as

Kernel-based Approximation Methods Using Matlab

Download Kernel-based Approximation Methods Using Matlab PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814630152
Total Pages : 537 pages
Book Rating : 4.8/5 (146 download)

DOWNLOAD NOW!


Book Synopsis Kernel-based Approximation Methods Using Matlab by : Gregory E Fasshauer

Download or read book Kernel-based Approximation Methods Using Matlab written by Gregory E Fasshauer and published by World Scientific Publishing Company. This book was released on 2015-07-30 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an attempt to introduce application scientists and graduate students to the exciting topic of positive definite kernels and radial basis functions, this book presents modern theoretical results on kernel-based approximation methods and demonstrates their implementation in various settings. The authors explore the historical context of this fascinating topic and explain recent advances as strategies to address long-standing problems. Examples are drawn from fields as diverse as function approximation, spatial statistics, boundary value problems, machine learning, surrogate modeling and finance. Researchers from those and other fields can recreate the results within using the documented MATLAB code, also available through the online library. This combination of a strong theoretical foundation and accessible experimentation empowers readers to use positive definite kernels on their own problems of interest.

Exploratory Data Analysis with MATLAB

Download Exploratory Data Analysis with MATLAB PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315349841
Total Pages : 589 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Exploratory Data Analysis with MATLAB by : Wendy L. Martinez

Download or read book Exploratory Data Analysis with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2017-08-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Mathematics Of Shapes And Applications

Download Mathematics Of Shapes And Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811200149
Total Pages : 220 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Mathematics Of Shapes And Applications by : Sergey Kushnarev

Download or read book Mathematics Of Shapes And Applications written by Sergey Kushnarev and published by World Scientific. This book was released on 2019-11-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding how a single shape can incur a complex range of transformations, while defining the same perceptually obvious figure, entails a rich and challenging collection of problems, at the interface between applied mathematics, statistics and computer science. The program on Mathematics of Shapes and Applications, was held at the Institute for Mathematical Sciences at the National University of Singapore in 2016. It provided discussions on theoretical developments and numerous applications in computer vision, object recognition and medical imaging.The analysis of shapes is an example of a mathematical problem directly connected with applications while offering deep open challenges to theoretical mathematicians. It has grown, over the past decades, into an interdisciplinary area in which researchers studying infinite-dimensional Riemannian manifolds (global analysis) interact with applied mathematicians, statisticians, computer scientists and biomedical engineers on a variety of problems involving shapes.The volume illustrates this wealth of subjects by providing new contributions on the metric structure of diffeomorphism groups and shape spaces, recent developments on deterministic and stochastic models of shape evolution, new computational methods manipulating shapes, and new statistical tools to analyze shape datasets. In addition to these contributions, applications of shape analysis to medical imaging and computational anatomy are discussed, leading, in particular, to improved understanding of the impact of cognitive diseases on the geometry of the brain.

Statistical Methods and Modeling of Seismogenesis

Download Statistical Methods and Modeling of Seismogenesis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119825040
Total Pages : 336 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods and Modeling of Seismogenesis by : Nikolaos Limnios

Download or read book Statistical Methods and Modeling of Seismogenesis written by Nikolaos Limnios and published by John Wiley & Sons. This book was released on 2021-04-27 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Multivariate Kernel Smoothing and Its Applications

Download Multivariate Kernel Smoothing and Its Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429939132
Total Pages : 255 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón

Download or read book Multivariate Kernel Smoothing and Its Applications written by José E. Chacón and published by CRC Press. This book was released on 2018-05-08 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.

Transactions on Engineering Technologies

Download Transactions on Engineering Technologies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401772363
Total Pages : 564 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Transactions on Engineering Technologies by : Haeng Kon Kim

Download or read book Transactions on Engineering Technologies written by Haeng Kon Kim and published by Springer. This book was released on 2015-07-07 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering and applications of engineering science in industry. This book describes some significant advances in engineering technologies and also serves as an excellent source of reference for researchers and graduate students.

MATLAB for Neuroscientists

Download MATLAB for Neuroscientists PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123838371
Total Pages : 571 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis MATLAB for Neuroscientists by : Pascal Wallisch

Download or read book MATLAB for Neuroscientists written by Pascal Wallisch and published by Academic Press. This book was released on 2014-01-09 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience