Kan Extensions in Enriched Category Theory

Download Kan Extensions in Enriched Category Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540363076
Total Pages : 190 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Kan Extensions in Enriched Category Theory by : Eduardo J. Dubuc

Download or read book Kan Extensions in Enriched Category Theory written by Eduardo J. Dubuc and published by Springer. This book was released on 2006-11-15 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original purpose of this paper was to provide suitable enriched completions of small enriched categories.

Basic Concepts of Enriched Category Theory

Download Basic Concepts of Enriched Category Theory PDF Online Free

Author :
Publisher : CUP Archive
ISBN 13 : 9780521287029
Total Pages : 260 pages
Book Rating : 4.2/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Basic Concepts of Enriched Category Theory by : Gregory Maxwell Kelly

Download or read book Basic Concepts of Enriched Category Theory written by Gregory Maxwell Kelly and published by CUP Archive. This book was released on 1982-02-18 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Categorical Homotopy Theory

Download Categorical Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139952633
Total Pages : 371 pages
Book Rating : 4.1/5 (399 download)

DOWNLOAD NOW!


Book Synopsis Categorical Homotopy Theory by : Emily Riehl

Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

(Co)end Calculus

Download (Co)end Calculus PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108746128
Total Pages : 331 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis (Co)end Calculus by : Fosco Loregian

Download or read book (Co)end Calculus written by Fosco Loregian and published by Cambridge University Press. This book was released on 2021-07-22 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-cite handbook gives the first systematic treatment of the (co)end calculus in category theory and its applications.

Basic Category Theory

Download Basic Category Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107044243
Total Pages : 193 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Basic Category Theory by : Tom Leinster

Download or read book Basic Category Theory written by Tom Leinster and published by Cambridge University Press. This book was released on 2014-07-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction ideal for students learning category theory for the first time.

Category Theory in Context

Download Category Theory in Context PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486820807
Total Pages : 273 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Category Theory in Context by : Emily Riehl

Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Elements of ∞-Category Theory

Download Elements of ∞-Category Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108952194
Total Pages : 782 pages
Book Rating : 4.1/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Elements of ∞-Category Theory by : Emily Riehl

Download or read book Elements of ∞-Category Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2022-02-10 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.

From Categories to Homotopy Theory

Download From Categories to Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108847625
Total Pages : 402 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis From Categories to Homotopy Theory by : Birgit Richter

Download or read book From Categories to Homotopy Theory written by Birgit Richter and published by Cambridge University Press. This book was released on 2020-04-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.

An Invitation to Applied Category Theory

Download An Invitation to Applied Category Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108582249
Total Pages : 351 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Applied Category Theory by : Brendan Fong

Download or read book An Invitation to Applied Category Theory written by Brendan Fong and published by Cambridge University Press. This book was released on 2019-07-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

Category Theory for Programmers (New Edition, Hardcover)

Download Category Theory for Programmers (New Edition, Hardcover) PDF Online Free

Author :
Publisher :
ISBN 13 : 9780464243878
Total Pages : pages
Book Rating : 4.2/5 (438 download)

DOWNLOAD NOW!


Book Synopsis Category Theory for Programmers (New Edition, Hardcover) by : Bartosz Milewski

Download or read book Category Theory for Programmers (New Edition, Hardcover) written by Bartosz Milewski and published by . This book was released on 2019-08-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.

Higher Topos Theory

Download Higher Topos Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691140480
Total Pages : 944 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Higher Topos Theory by : Jacob Lurie

Download or read book Higher Topos Theory written by Jacob Lurie and published by Princeton University Press. This book was released on 2009-07-26 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

Introduction to Infinity-Categories

Download Introduction to Infinity-Categories PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030615243
Total Pages : 300 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Infinity-Categories by : Markus Land

Download or read book Introduction to Infinity-Categories written by Markus Land and published by Springer Nature. This book was released on 2021-04-21 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of infinity-categories, a tool used in many aspects of modern pure mathematics. It treats the basics of the theory and supplies all the necessary details while leading the reader along a streamlined path from the basic definitions to more advanced results such as the very important adjoint functor theorems. The book is based on lectures given by the author on the topic. While the material itself is well-known to experts, the presentation of the material is, in parts, novel and accessible to non-experts. Exercises complement this textbook that can be used both in a classroom setting at the graduate level and as an introductory text for the interested reader.

Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem

Download Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108831443
Total Pages : 881 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem by : Michael A. Hill

Download or read book Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem written by Michael A. Hill and published by Cambridge University Press. This book was released on 2021-07-29 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and definitive account of the authors' resolution of the Kervaire invariant problem in stable homotopy theory.

Formal Category Theory

Download Formal Category Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662206379
Total Pages : 300 pages
Book Rating : 4.2/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Formal Category Theory by : J. W. Gray

Download or read book Formal Category Theory written by J. W. Gray and published by . This book was released on 2014-09-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Categorical Algebra: Volume 1, Basic Category Theory

Download Handbook of Categorical Algebra: Volume 1, Basic Category Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521441781
Total Pages : 363 pages
Book Rating : 4.5/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Categorical Algebra: Volume 1, Basic Category Theory by : Francis Borceux

Download or read book Handbook of Categorical Algebra: Volume 1, Basic Category Theory written by Francis Borceux and published by Cambridge University Press. This book was released on 1994-08-26 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence, with the first being essentially self-contained, and are accessible to graduate students with a good background in mathematics. In particular, Volume 1, which is devoted to general concepts, can be used for advanced undergraduate courses on category theory.

Continuity Theory

Download Continuity Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331931159X
Total Pages : 472 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Continuity Theory by : Louis Nel

Download or read book Continuity Theory written by Louis Nel and published by Springer. This book was released on 2016-06-03 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to a better understanding of functional analysis, towards establishing an efficient setting for its pursuit.

Categories for the Working Mathematician

Download Categories for the Working Mathematician PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461298393
Total Pages : 265 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Categories for the Working Mathematician by : Saunders MacLane

Download or read book Categories for the Working Mathematician written by Saunders MacLane and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint pair of functors. This appears in many substantially equivalent forms: That of universal construction, that of direct and inverse limit, and that of pairs offunctors with a natural isomorphism between corresponding sets of arrows. All these forms, with their interrelations, are examined in Chapters III to V. The slogan is "Adjoint functors arise everywhere". Alternatively, the fundamental notion of category theory is that of a monoid -a set with a binary operation of multiplication which is associative and which has a unit; a category itself can be regarded as a sort of general ized monoid. Chapters VI and VII explore this notion and its generaliza tions. Its close connection to pairs of adjoint functors illuminates the ideas of universal algebra and culminates in Beck's theorem characterizing categories of algebras; on the other hand, categories with a monoidal structure (given by a tensor product) lead inter alia to the study of more convenient categories of topological spaces.