Investigation of Created Fracture Geometry Through Hydraulic Fracture Treatment Analysis

Download Investigation of Created Fracture Geometry Through Hydraulic Fracture Treatment Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 65 pages
Book Rating : 4.:/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Investigation of Created Fracture Geometry Through Hydraulic Fracture Treatment Analysis by : Ibraheem Anwer Ahmed

Download or read book Investigation of Created Fracture Geometry Through Hydraulic Fracture Treatment Analysis written by Ibraheem Anwer Ahmed and published by . This book was released on 2013 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest. This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing. This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148246.

Hydraulic Fracture Monitoring

Download Hydraulic Fracture Monitoring PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (141 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Monitoring by : Ana Karen Ortega Perez

Download or read book Hydraulic Fracture Monitoring written by Ana Karen Ortega Perez and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-monitoring before, during, and after hydraulic fracturing treatment is essential to accomplish a successful fracture completion program. By knowing the geometry, orientation, and propagation of the hydraulic fractures, we can identify potential completion issues during fracturing operations and help in the design of more efficient unconventional reservoir completions. Distributed Acoustic Sensing (DAS) is an emerging technology in hydraulic fracture monitoring that enables continuous, real-time measurements along the entire length of a fiber optic cable. The low-frequency band of DAS records strain perturbations of the medium, due to fracture propagation, which provides critical constraints on hydraulic fracture geometry. In this study, the low-frequency DAS strain fronts was analyzed, with their corresponding pumping curves, for one hydraulic fracturing treatment to obtain information on the hydraulic fractures like fracture azimuth, propagation speed, number of fractures created during each stage and re-stimulation of pre-existent fractures. Then, the microseismicity of the treatment was analyzed to obtain information on hydraulic fractures like length, height, trajectory and cloud growth over time. The microseismicity was also projected onto the strain fronts to study the development of the events with respect to the fracture signal and to find correlations between the strain changes and the microseismic events. Finally, the PKN model was computed using parameters from the stimulation treatment and the DAS strain fronts to forecast anticipated fracture lengths against observations. The PKN modeling results were compared to the microseismic and DAS results to find stages where the hydraulic fractures did not grow or propagate as expected. The low-frequency DAS is able to obtain information on hydraulic fractures that would need extra processing or might not be picked up using other records as microseismicity. However, the spatial constraint of the measurements in DAS needs to be taken into consideration. This spatial constraint can be addressed by the integration of other records. In general, there is good agreement between the LF DAS data, the pumping information, the microseismic data and the PKN model. But when they do not agree on a stage, that gives us an indication that something unexpected happened during injection. Models describing the expected behavior of the different records analyzed in this research were created to explain some possible scenarios of fracture propagation. Most stages in this treatment fall within one of these models.

Real-time and Post-frac' 3-D Analysis of Hydraulic Fracture Treatments in Geothermal Reservoirs

Download Real-time and Post-frac' 3-D Analysis of Hydraulic Fracture Treatments in Geothermal Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Real-time and Post-frac' 3-D Analysis of Hydraulic Fracture Treatments in Geothermal Reservoirs by :

Download or read book Real-time and Post-frac' 3-D Analysis of Hydraulic Fracture Treatments in Geothermal Reservoirs written by and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic power production from Hot Dry Rock (HDR) requires the establishment of an efficient circulation system between wellbores in reservoir rock with extremely low matrix permeability. Hydraulic fracturing is employed to establish the necessary circulation system. Hydraulic fracturing has also been performed to increase production from hydrothermal reservoirs by enhancing the communication with the reservoir's natural fracture system. Optimal implementation of these hydraulic fracturing applications, as with any engineering application, requires the use of credible physical models and the reconciliation of the physical models with treatment data gathered in the field. Analysis of the collected data has shown that 2-D models and 'conventional' 3-D models of the hydraulic fracturing process apply very poorly to hydraulic fracturing in geothermal reservoirs. Engineering decisions based on these more 'conventional' fracture modeling techniques lead to serious errors in predicting the performance of hydraulic fracture treatments. These errors can lead to inappropriate fracture treatment design as well as grave errors in well placement for hydrothermal reservoirs or HDR reservoirs. This paper outlines the reasons why conventional modeling approaches fall short, and what types of physical models are needed to credibly estimate created hydraulic fracture geometry. The methodology of analyzing actual measured fracture treatment data and matching the observed net fracturing pressure (in realtime as well as after the treatment) is demonstrated at two separate field sites. Results from an extensive Acoustic Emission (AE) fracture diagnostic survey are also presented for the first case study aS an independent measure of the actual created hydraulic fracture geometry.

Mechanics of Hydraulic Fracturing

Download Mechanics of Hydraulic Fracturing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111974234X
Total Pages : 291 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Mechanics of Hydraulic Fracturing by : Xin-rong Zhang

Download or read book Mechanics of Hydraulic Fracturing written by Xin-rong Zhang and published by John Wiley & Sons. This book was released on 2023-01-05 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Modern Fracturing

Download Modern Fracturing PDF Online Free

Author :
Publisher :
ISBN 13 : 9781604616880
Total Pages : 509 pages
Book Rating : 4.6/5 (168 download)

DOWNLOAD NOW!


Book Synopsis Modern Fracturing by : Michael J. Economides

Download or read book Modern Fracturing written by Michael J. Economides and published by . This book was released on 2007 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Natural gas is rapidly emerging as a premier fuel for the world economy with markedly increasing trans-national trade. With proven reserves far exceeding those for crude oil, natural gas is likely to be around for centuries. This is a book about enhancing natural gas production using one of the most important and widespread well completion technologies -- hydraulic fracturing. The book addresses the way that natural gas is produced from reservoirs and then describes diagnostic techniques that can pinpoint whether the well is producing as it should or whether intervention should be undertaken, which is the central theme of this book."--Back cover.

Hydraulic Fracture Modeling

Download Hydraulic Fracture Modeling PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128129999
Total Pages : 568 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Modeling by : Yu-Shu Wu

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs. - Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods - Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics - Provides today's petroleum engineer with model validation tools backed by real-world case studies

3-D Modeling of Interaction Between a Hydraulic Fracture and Multiple Natural Fractures Using Finite Element Analysis

Download 3-D Modeling of Interaction Between a Hydraulic Fracture and Multiple Natural Fractures Using Finite Element Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 184 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis 3-D Modeling of Interaction Between a Hydraulic Fracture and Multiple Natural Fractures Using Finite Element Analysis by : Debashish Talukder

Download or read book 3-D Modeling of Interaction Between a Hydraulic Fracture and Multiple Natural Fractures Using Finite Element Analysis written by Debashish Talukder and published by . This book was released on 2019 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: A three-layered, 3-D geo-mechanical model was developed using Finite Element Analysis (FEA) software (ABAQUS) to simulate single stage hydraulic fracturing treatment in a synthetic fractured model based on available shale information from literature. The main objectives of this study were- (i) to investigate the interaction between a hydraulic fracture (HF) orthogonally intersecting two parallel natural fractures (NF) and (ii) to identify significant parameters and their 2-factor interactions that affect HF propagation in the presence of multiple NFs. Based on literature review, an initial set of 20 parameters (a combination of geologic and drilling parameters) was selected. Those parameters were believed to affect the hydraulic fracture propagation in a naturally fractured model. Experiments were conducted in two stages. First-order order numerical experiments were conducted under the Plackett-Burman experimental design. Central Composite Design (CCD) was used to check curvature and to take care of non-linearity existing in the dataset. A stepwise sensitivity analysis and parametric study were conducted to identify significant parameters and their interactions. When the HF interacted with NFs, there were three possible outcomes- the HF either got arrested, dilated or crossed the NF. The overall hydraulic fracture geometry depended on the type of interaction behavior occurring at the intersection. The NF leakoff coefficient was the most significant factor in the 1st order experiments that affected the HF propagation in the presence of multiple NFs. CCD results suggested that NF strength at the bottom shale layer and injection fluid viscosity significantly influenced the HF opening in the presence of the natural fractures. The most significant two-factor interaction was the interaction between stress contrast and Young’s modulus of the overburden shale (Ytop). This study will help understand the interaction behavior between a HF and two pre-existing NFs. The parametric study will provide a valuable insight for hydraulic fracturing treatment in a naturally fractured formation.

Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs

Download Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (851 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs by : Arash Dahi Taleghani

Download or read book Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs written by Arash Dahi Taleghani and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic fracturing is one of the main stimulating techniques to enhance recovery from these fractured reservoirs. Although hydraulic fracturing has been used for decades for the stimulation of tight gas reservoirs, a thorough understanding of the interaction between induced hydraulic fractures and natural fractures is still lacking. Recent examples of hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture geometry is a common occurrence. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Large populations of natural fractures that exist in formations such as the Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even though there is no porosity in the sealed fractures, they may still serve as weak paths for fracture initiation and/or for diverting the path of the growing hydraulic fractures. Performing hydraulic fracture design calculations under these complex conditions requires modeling of fracture intersections and tracking fluid fronts in the network of reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed natural fractures and the intact rock toughness in hydraulic fracturing are studied. Accordingly, the role of the pre-existing fracture geometry is also investigated. The results provide some explanations for significant differences in hydraulic fracturing in naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this research, an extended finite element method (XFEM) code is developed to simulate fracture propagation, initiation and intersection. The motivation behind applying XFEM are the desire to avoid remeshing in each step of the fracture propagation, being able to consider arbitrary varying geometry of natural fractures and the insensitivity of fracture propagation to mesh geometry. New modifications are introduced into XFEM to improve stress intensity factor calculations, including fracture intersection criteria into the model and improving accuracy of the solution in near crack tip regions. The presented coupled fluid flow-fracture mechanics simulations extend available modeling efforts and provide a unified framework for evaluating fracture design parameters and their consequences. Results demonstrate that fracture pattern complexity is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, the natural fracture cement strength, and the approach angle of the hydraulic fracture to the natural fracture. Previous studies (mostly based on frictional fault stability analysis) have concentrated on predicting the onset of natural fracture failure. However, the use of fracture mechanics and XFEM makes it possible to evaluate the progression of fracture growth over time as fluid is diverted into the natural fractures. Analysis shows that the growing hydraulic fracture may exert enough tensile and/or shear stresses on cemented natural fractures that they may be opened or slip in advance of hydraulic fracture tip arrival, while under some conditions, natural fractures will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy of cements where, for cases below this threshold, hydraulic fractures divert into the natural fractures. The value of this threshold is calculated for different fracture set orientations. Finally, detailed pressure profile and aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture propagation conditions. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We introduce a new more general criterion for fracture propagation at the intersections. We present a complex hydraulic fracture pattern propagation model based on the Extended Finite Element Method as a design tool that can be used to optimize treatment parameters under complex propagation conditions.

Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Download Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736989342
Total Pages : 208 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity by : Mengting Li

Download or read book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity written by Mengting Li and published by Cuvillier Verlag. This book was released on 2018-12-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

A Pkn Hydraulic Fracture Model Study and Formation Permeability Determination

Download A Pkn Hydraulic Fracture Model Study and Formation Permeability Determination PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (779 download)

DOWNLOAD NOW!


Book Synopsis A Pkn Hydraulic Fracture Model Study and Formation Permeability Determination by : Jing Xiang

Download or read book A Pkn Hydraulic Fracture Model Study and Formation Permeability Determination written by Jing Xiang and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations

Download Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351618237
Total Pages : 262 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations by : Ahmed Alzahabi

Download or read book Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations written by Ahmed Alzahabi and published by CRC Press. This book was released on 2018-07-03 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry’s ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.

Hydraulic Fracture Modeling in Naturally Fractured Reservoirs

Download Hydraulic Fracture Modeling in Naturally Fractured Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 239 pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Modeling in Naturally Fractured Reservoirs by : Kaustubh Shrivastava

Download or read book Hydraulic Fracture Modeling in Naturally Fractured Reservoirs written by Kaustubh Shrivastava and published by . This book was released on 2019 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing of horizontal wells is one of the key technological breakthroughs that has led to the shale revolution. Hydraulic fracturing models are used to engineer hydraulic fracture design and optimize production. Typically, hydraulic fracturing models treat hydraulic fractures as planar, bi-wing fractures. However, recent core-through investigations have suggested that during hydraulic fracturing in naturally fractured reservoirs, complex hydraulic fracture geometries can be created due to the interaction of the growing hydraulic fracture with natural fractures. This limits the application of planar fracture models for optimizing hydraulic fracturing design in naturally fractured reservoirs. In this research, we present a novel three-dimensional displacement discontinuity method based hydraulic fracturing simulator that allows us to model hydraulic fracture growth in the presence of natural fractures along with proppant transport in an efficient manner. The model developed in this dissertation is used to investigate the interaction of a hydraulic fracture with natural fractures and study the transport of proppant in the resulting complex fracture networks. This investigation gives us novel insight into the influence of fracture geometry and stress interference on the final distribution of proppant in fracture networks. Based on this investigation, suggestions are made to improve proppant transport in complex fracture networks. In order to correctly capture the effect of natural fractures on fracture growth, knowledge about the distribution of natural fractures in the reservoir is imperative. Typically, little is known about the in-situ natural fracture distribution, as direct observation of the reservoir is not possible. A novel technique of synthetic coring is developed to create a discrete fracture network (DFN) from core data, and it is used to create a DFN based on the Hydraulic Fracturing Test Site #1 data. Hydraulic fracture propagation is modeled in the created DFN, and the results are compared with field observations. As the reservoir may contain thousands of natural fractures, simulations in a realistic DFN can be computationally very expensive. In order to reduce the computational requirements of the simulator, we present a novel predictor step based on the local linearization method that provides a better initial guess for solving the fluid-solid interaction problem. This is shown to reduce computational time significantly. A novel technique, Extended Adaptive Integral Method, to speed up the simulator is developed. The method uses an effective medium to represent the interaction between displacement discontinuity elements and reduces the order of complexity of solving the geomechanical system of equations from O(N2) to O(NlogN). The novel formulation of this method is presented, and sensitivity studies are conducted to show the improvement in computational efficiency

Petroleum Production Systems

Download Petroleum Production Systems PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 0137031580
Total Pages : 752 pages
Book Rating : 4.1/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Petroleum Production Systems by : Michael J. Economides

Download or read book Petroleum Production Systems written by Michael J. Economides and published by Pearson Education. This book was released on 2013 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by four leading experts, this edition thoroughly introduces today's modern principles of petroleum production systems development and operation, considering the combined behaviour of reservoirs, surface equipment, pipeline systems, and storage facilities. The authors address key issues including artificial lift, well diagnosis, matrix stimulation, hydraulic fracturing and sand control. They show how to optimise systems for diverse production schedules using queuing theory, as well as linear and dynamic programming. Throughout, they provide both best practices and rationales, fully illuminating the exploitation of unconventional oil and gas reservoirs. Updates include: Extensive new coverage of hydraulic fracturing, including high permeability fracturing New sand and water management techniques * An all-new chapter on Production Analysis New coverage of digital reservoirs and self-learning techniques New skin correlations and HW flow techniques

Development of Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs

Download Development of Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (959 download)

DOWNLOAD NOW!


Book Synopsis Development of Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs by : Chong Ahn

Download or read book Development of Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs written by Chong Ahn and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The most effective method for stimulating shale gas reservoirs is a massive hydraulic fracture treatment. Recent analysis using microseismic technology have shown that complex fracture networks are commonly created in the field as a result of the stimulation of shale wells. The interaction between pre-existing natural fractures and the propagating hydraulic fracture is a critical factor affecting the created complex fracture network; however, many existing numerical models simulate only planar hydraulic fractures without considering the pre-existing fractures in the formation. The shale formations already contain a large number of natural fractures, so an accurate fracture propagation model needs to be developed to optimize the fracturing process.In this research, we first characterized the mechanics of hydraulic fracturing and fluid flow in the shale gas reservoir. Then, a 2D, single-phase numerical model and a 3D, 2-phase coupled model were developed, which integrate dynamic fracture propagation, interactions between hydraulic fractures and pre-existing natural fractures, fracture fluid leakoff, and fluid flow in a petroleum reservoir. By using the developed model, we conducted parametric studies to quantify the effects of treatment rate, treatment size, fracture fluid viscosity, differential horizontal stress, natural fracture spacing, fracture toughness, matrix permeability, and proppant size on the geometry of the hydraulic fracture network. The findings elucidate important trends in hydraulic fracturing of shale reservoirs that are useful in improving the design of treatments for specific reservoir settings.

Hydraulic Fracture Design Optimization

Download Hydraulic Fracture Design Optimization PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 11 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Design Optimization by :

Download or read book Hydraulic Fracture Design Optimization written by and published by . This book was released on 1992 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research and development investigation, sponsored by US DOE and the oil and gas industry, extends previously developed hydraulic fracture geometry models and applied energy related characteristic time concepts towards the optimal design and control of hydraulic fracture geometries. The primary objective of this program is to develop rational criteria, by examining the associated energy rate components during the hydraulic fracture evolution, for the formulation of stimulation treatment design along with real-time fracture configuration interpretation and control.

Rock Fractures and Fluid Flow

Download Rock Fractures and Fluid Flow PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309049962
Total Pages : 568 pages
Book Rating : 4.3/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Rock Fractures and Fluid Flow by : National Research Council

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Download Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351796283
Total Pages : 259 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications by : Xinpu Shen

Download or read book Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.