Introduction to Tensor Calculus and Continuum Mechanics

Download Introduction to Tensor Calculus and Continuum Mechanics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 367 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Tensor Calculus and Continuum Mechanics by : John Henry Heinbockel

Download or read book Introduction to Tensor Calculus and Continuum Mechanics written by John Henry Heinbockel and published by . This book was released on 1996 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Tensor Algebra and Tensor Analysis for Engineers

Download Tensor Algebra and Tensor Analysis for Engineers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540939075
Total Pages : 253 pages
Book Rating : 4.5/5 (49 download)

DOWNLOAD NOW!


Book Synopsis Tensor Algebra and Tensor Analysis for Engineers by : Mikhail Itskov

Download or read book Tensor Algebra and Tensor Analysis for Engineers written by Mikhail Itskov and published by Springer Science & Business Media. This book was released on 2009-04-30 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.

A Brief on Tensor Analysis

Download A Brief on Tensor Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441985220
Total Pages : 124 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis A Brief on Tensor Analysis by : James G. Simmonds

Download or read book A Brief on Tensor Analysis written by James G. Simmonds and published by Springer Science & Business Media. This book was released on 2012-10-31 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.

Tensor Analysis and Continuum Mechanics

Download Tensor Analysis and Continuum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642883826
Total Pages : 215 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis and Continuum Mechanics by : Wilhelm Flügge

Download or read book Tensor Analysis and Continuum Mechanics written by Wilhelm Flügge and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.

Tensors

Download Tensors PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387694692
Total Pages : 300 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Tensors by : Anadi Jiban Das

Download or read book Tensors written by Anadi Jiban Das and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

Download Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319562649
Total Pages : 134 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds by : Uwe Mühlich

Download or read book Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds written by Uwe Mühlich and published by Springer. This book was released on 2017-04-18 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.

Continuum Mechanics and Linear Elasticity

Download Continuum Mechanics and Linear Elasticity PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9402417710
Total Pages : 528 pages
Book Rating : 4.4/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Continuum Mechanics and Linear Elasticity by : Ciprian D. Coman

Download or read book Continuum Mechanics and Linear Elasticity written by Ciprian D. Coman and published by Springer Nature. This book was released on 2019-11-02 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).

Introduction to Continuum Mechanics

Download Introduction to Continuum Mechanics PDF Online Free

Author :
Publisher : Newnes
ISBN 13 : 0080983871
Total Pages : 571 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Continuum Mechanics by : David Rubin

Download or read book Introduction to Continuum Mechanics written by David Rubin and published by Newnes. This book was released on 2012-12-02 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.

Tensor Calculus for Engineers and Physicists

Download Tensor Calculus for Engineers and Physicists PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331931520X
Total Pages : 370 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Tensor Calculus for Engineers and Physicists by : Emil de Souza Sánchez Filho

Download or read book Tensor Calculus for Engineers and Physicists written by Emil de Souza Sánchez Filho and published by Springer. This book was released on 2016-05-20 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.

Fundamentals of Continuum Mechanics

Download Fundamentals of Continuum Mechanics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118927672
Total Pages : 229 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Continuum Mechanics by : John W. Rudnicki

Download or read book Fundamentals of Continuum Mechanics written by John W. Rudnicki and published by John Wiley & Sons. This book was released on 2014-09-22 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering

Continuum Mechanics and Theory of Materials

Download Continuum Mechanics and Theory of Materials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662047756
Total Pages : 666 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Continuum Mechanics and Theory of Materials by : Peter Haupt

Download or read book Continuum Mechanics and Theory of Materials written by Peter Haupt and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.

A First Course in Continuum Mechanics

Download A First Course in Continuum Mechanics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521886805
Total Pages : 5 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Continuum Mechanics by : Oscar Gonzalez

Download or read book A First Course in Continuum Mechanics written by Oscar Gonzalez and published by Cambridge University Press. This book was released on 2008-01-17 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modeling and simulation of fluids, solids and other materials with significant coupling and thermal effects is becoming an increasingly important area of study in applied mathematics and engineering. Necessary for such studies is a fundamental understanding of the basic principles of continuum mechanics and thermodynamics. This book is a clear introduction to these principles. It is designed for a one- or two-quarter course for advanced undergraduate and beginning graduate students in the mathematical and engineering sciences, and is based on over nine years of teaching experience. It is also sufficiently self-contained for use outside a classroom environment. Prerequisites include a basic knowledge of linear algebra, multivariable calculus, differential equations and physics. The authors begin by explaining tensor algebra and calculus in three-dimensional Euclidean space. Using both index and coordinate-free notation, they introduce the basic axioms of continuum mechanics pertaining to mass, force, motion, temperature, energy and entropy, and the concepts of frame-indifference and material constraints. They devote four chapters to different theories of fluids and solids, and, unusually at this level, they consider both isothermal and thermal theories in detail. The book contains a wealth of exercises that support the theory and illustrate various applications. Full solutions to odd-numbered exercises are given at the end of each chapter and a complete solutions manual for all exercises is available to instructors upon request. Each chapter also contains a bibliography with references covering different presentations, further applications and numerical aspects of the theory. Book jacket.

Tensor Analysis and Nonlinear Tensor Functions

Download Tensor Analysis and Nonlinear Tensor Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401732213
Total Pages : 680 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis and Nonlinear Tensor Functions by : Yuriy I. Dimitrienko

Download or read book Tensor Analysis and Nonlinear Tensor Functions written by Yuriy I. Dimitrienko and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.

Continuum Damage Mechanics

Download Continuum Damage Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400726651
Total Pages : 420 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Continuum Damage Mechanics by : Sumio Murakami

Download or read book Continuum Damage Mechanics written by Sumio Murakami and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.

Manifolds, Tensor Analysis, and Applications

Download Manifolds, Tensor Analysis, and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461210291
Total Pages : 666 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Tensor Analysis, and Applications by : Ralph Abraham

Download or read book Manifolds, Tensor Analysis, and Applications written by Ralph Abraham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

An Expedition to Continuum Theory

Download An Expedition to Continuum Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 940077799X
Total Pages : 408 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis An Expedition to Continuum Theory by : Wolfgang H. Müller

Download or read book An Expedition to Continuum Theory written by Wolfgang H. Müller and published by Springer Science & Business Media. This book was released on 2014-01-18 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces field theory as required in solid and fluid mechanics as well as in electromagnetism. It includes the necessary applied mathematical framework of tensor algebra and tensor calculus, using an inductive approach particularly suited to beginners. It is geared toward undergraduate classes in continuum theory for engineers in general, and more specifically to courses in continuum mechanics. Students will gain a sound basic understanding of the subject as well as the ability to solve engineering problems by applying the general laws of nature in terms of the balances for mass, momentum, and energy in combination with material-specific relations in terms of constitutive equations, thus learning how to use the theory in practice for themselves. This is facilitated by numerous examples and problems provided throughout the text.

Tensor Analysis with Applications in Mechanics

Download Tensor Analysis with Applications in Mechanics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814313998
Total Pages : 378 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis with Applications in Mechanics by : L. P. Lebedev

Download or read book Tensor Analysis with Applications in Mechanics written by L. P. Lebedev and published by World Scientific. This book was released on 2010 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells