Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Intersection Homology And Perverse Sheaves
Download Introduction To Intersection Homology And Perverse Sheaves full books in PDF, epub, and Kindle. Read online Introduction To Intersection Homology And Perverse Sheaves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Intersection Homology & Perverse Sheaves by : Laurenţiu G. Maxim
Download or read book Intersection Homology & Perverse Sheaves written by Laurenţiu G. Maxim and published by Springer Nature. This book was released on 2019-11-30 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
Book Synopsis An Introduction to Intersection Homology Theory by : Frances Clare Kirwan
Download or read book An Introduction to Intersection Homology Theory written by Frances Clare Kirwan and published by Halsted Press. This book was released on 1988 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Intersection Cohomology by : Armand Borel
Download or read book Intersection Cohomology written by Armand Borel and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). Some familiarity with algebraic topology and sheaf theory is assumed.
Book Synopsis Singular Intersection Homology by : Greg Friedman
Download or read book Singular Intersection Homology written by Greg Friedman and published by Cambridge University Press. This book was released on 2020-09-24 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.
Book Synopsis D-Modules, Perverse Sheaves, and Representation Theory by : Ryoshi Hotta
Download or read book D-Modules, Perverse Sheaves, and Representation Theory written by Ryoshi Hotta and published by Springer Science & Business Media. This book was released on 2007-11-07 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Book Synopsis Topology of Singular Spaces and Constructible Sheaves by : Jörg Schürmann
Download or read book Topology of Singular Spaces and Constructible Sheaves written by Jörg Schürmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on the lecture notes of six courses delivered at a Cimpa Summer School in Temuco, Chile, in January 2001. Leading experts contribute with introductory articles covering a broad area in probability and its applications, such as mathematical physics and mathematics of finance. Written at graduate level, the lectures touch the latest advances on each subject, ranging from classical probability theory to modern developments. Thus the book will appeal to students, teachers and researchers working in probability theory or related fields.
Book Synopsis Sheaves in Topology by : Alexandru Dimca
Download or read book Sheaves in Topology written by Alexandru Dimca and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.
Book Synopsis Perverse Sheaves and Applications to Representation Theory by : Pramod N. Achar
Download or read book Perverse Sheaves and Applications to Representation Theory written by Pramod N. Achar and published by American Mathematical Soc.. This book was released on 2021-09-27 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Book Synopsis Introduction to Soergel Bimodules by : Ben Elias
Download or read book Introduction to Soergel Bimodules written by Ben Elias and published by Springer Nature. This book was released on 2020-09-26 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are fairly elementary objects and explicit calculations are possible. On the other, they have deep connections to Lie theory and geometry. Taking these two aspects together, they offer a wonderful primer on geometric representation theory. In this book the reader is introduced to the theory through a series of lectures, which range from the basics, all the way to the latest frontiers of research. This book serves both as an introduction and as a reference guide to the theory of Soergel bimodules. Thus it is intended for anyone who wants to learn about this exciting field, from graduate students to experienced researchers.
Book Synopsis An Introduction to Intersection Homology Theory, Second Edition by : Frances Kirwan
Download or read book An Introduction to Intersection Homology Theory, Second Edition written by Frances Kirwan and published by CRC Press. This book was released on 2006-06-07 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now more that a quarter of a century old, intersection homology theory has proven to be a powerful tool in the study of the topology of singular spaces, with deep links to many other areas of mathematics, including combinatorics, differential equations, group representations, and number theory. Like its predecessor, An Introduction to Intersection Homology Theory, Second Edition introduces the power and beauty of intersection homology, explaining the main ideas and omitting, or merely sketching, the difficult proofs. It treats both the basics of the subject and a wide range of applications, providing lucid overviews of highly technical areas that make the subject accessible and prepare readers for more advanced work in the area. This second edition contains entirely new chapters introducing the theory of Witt spaces, perverse sheaves, and the combinatorial intersection cohomology of fans. Intersection homology is a large and growing subject that touches on many aspects of topology, geometry, and algebra. With its clear explanations of the main ideas, this book builds the confidence needed to tackle more specialist, technical texts and provides a framework within which to place them.
Book Synopsis Topological Invariants of Stratified Spaces by : Markus Banagl
Download or read book Topological Invariants of Stratified Spaces written by Markus Banagl and published by Springer Science & Business Media. This book was released on 2007-02-16 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this book is the restoration of Poincaré duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. Highlights include complete and detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures.
Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts
Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Book Synopsis Equivariant Sheaves and Functors by : Joseph Bernstein
Download or read book Equivariant Sheaves and Functors written by Joseph Bernstein and published by Springer. This book was released on 2006-11-15 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.
Book Synopsis Handbook of Geometry and Topology of Singularities II by : José Luis Cisneros-Molina
Download or read book Handbook of Geometry and Topology of Singularities II written by José Luis Cisneros-Molina and published by Springer Nature. This book was released on 2021-11-01 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Book Synopsis Stratified Morse Theory by : Mark Goresky
Download or read book Stratified Morse Theory written by Mark Goresky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Book Synopsis Periods and Nori Motives by : Annette Huber
Download or read book Periods and Nori Motives written by Annette Huber and published by Springer. This book was released on 2017-03-08 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Book Synopsis The Geometry of Schemes by : David Eisenbud
Download or read book The Geometry of Schemes written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.