Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Integrable Structures Of Exactly Solvable Two Dimensional Models Of Quantum Field Theory
Download Integrable Structures Of Exactly Solvable Two Dimensional Models Of Quantum Field Theory full books in PDF, epub, and Kindle. Read online Integrable Structures Of Exactly Solvable Two Dimensional Models Of Quantum Field Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory by : S. Pakuliak
Download or read book Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory written by S. Pakuliak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable quantum field theories and integrable lattice models have been studied for several decades, but during the last few years new ideas have emerged that have considerably changed the topic. The first group of papers published here is concerned with integrable structures of quantum lattice models related to quantum group symmetries. The second group deals with the description of integrable structures in two-dimensional quantum field theories, especially boundary problems, thermodynamic Bethe ansatz and form factor problems. Finally, a major group of papers is concerned with the purely mathematical framework that underlies the physically-motivated research on quantum integrable models, including elliptic deformations of groups, representation theory of non-compact quantum groups, and quantization of moduli spaces.
Book Synopsis Elements of Classical and Quantum Integrable Systems by : Gleb Arutyunov
Download or read book Elements of Classical and Quantum Integrable Systems written by Gleb Arutyunov and published by Springer. This book was released on 2019-07-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.
Book Synopsis Non-perturbative Methods in 2 Dimensional Quantum Field Theory by : Elcio Abdalla
Download or read book Non-perturbative Methods in 2 Dimensional Quantum Field Theory written by Elcio Abdalla and published by World Scientific. This book was released on 2001 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Non-Perturbative Methods in Two-Dimensional Quantum Field Theory is an extensively revised version, involving major changes and additions. Although much of the material is special to two dimensions, the techniques used should prove helpful also in the development of techniques applicable in higher dimensions. In particular, the last three chapters of the book will be of direct interest to researchers wanting to work in the field of conformal field theory and strings.This book is intended for students working for their PhD degree and post-doctoral researchers wishing to acquaint themselves with the non-perturbative aspects of quantum field theory.
Book Synopsis Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics by : Primitivo B. Acosta Humanez
Download or read book Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics written by Primitivo B. Acosta Humanez and published by American Mathematical Soc.. This book was released on 2012 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the 2010 Jairo Charris Seminar in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, which was held at the Universidad Sergio Arboleda in Santa Marta, Colombia. The papers cover the fields of Supersymmetric Quantum Mechanics and Quantum Integrable Systems, from an algebraic point of view. Some results presented in this volume correspond to the analysis of Darboux Transformations in higher order as well as some exceptional orthogonal polynomials. The reader will find an interesting Galois approach to study finite gap potentials. This book is published in cooperation with Instituto de Matematicas y sus Aplicaciones (IMA).
Book Synopsis Quantum Inverse Scattering Method and Correlation Functions by : V. E. Korepin
Download or read book Quantum Inverse Scattering Method and Correlation Functions written by V. E. Korepin and published by Cambridge University Press. This book was released on 1997-03-06 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.
Book Synopsis Planar Ising Correlations by : John Palmer
Download or read book Planar Ising Correlations written by John Palmer and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory.
Book Synopsis Optimization Algorithms by : Mykhaylo Andriychuk
Download or read book Optimization Algorithms written by Mykhaylo Andriychuk and published by BoD – Books on Demand. This book was released on 2024-07-10 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization Algorithms - Classics and Last Advances is devoted to developing algorithm theory and exploring the use of different optimization algorithms for solving various problems in pure science, applied physics, and information technology. The book consists of two sections. The first focuses on developing abstract algorithms with subsequent applications to real-world optimization problems. It discusses optimization problems based on partial differential equations, canonical polyadic decomposition, variational approach, and ant colony optimization, which are discussed here. The second section presents problems related to optimization in information technologies. Chapters in this section address the utilization of optimization algorithms to solve problems of reducing computation time and computer memory, reducing kernel mechanism processing time in multimedia authoring tools, arranging access optimization for special applications, and minimizing resources for solving vehicle routing problems.
Book Synopsis Quantum Groups by : Benjamin Enriquez
Download or read book Quantum Groups written by Benjamin Enriquez and published by European Mathematical Society. This book was released on 2008 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume starts with a lecture course by P. Etingof on tensor categories (notes by D. Calaque). This course is an introduction to tensor categories, leading to topics of recent research such as realizability of fusion rings, Ocneanu rigidity, module categories, weak Hopf algebras, Morita theory for tensor categories, lifting theory, categorical dimensions, Frobenius-Perron dimensions, and the classification of tensor categories. The remainder of the book consists of three detailed expositions on associators and the Vassiliev invariants of knots, classical and quantum integrable systems and elliptic algebras, and the groups of algebra automorphisms of quantum groups. The preface puts the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of the ongoing research in the domain of quantum groups, an important subject of current mathematical physics.
Book Synopsis Symmetries, Integrable Systems and Representations by : Kenji Iohara
Download or read book Symmetries, Integrable Systems and Representations written by Kenji Iohara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
Book Synopsis Shuffle Approach Towards Quantum Affine and Toroidal Algebras by : Alexander Tsymbaliuk
Download or read book Shuffle Approach Towards Quantum Affine and Toroidal Algebras written by Alexander Tsymbaliuk and published by Springer Nature. This book was released on 2023-08-07 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the author's mini course delivered at Tokyo University of Marine Science and Technology in March 2019. The shuffle approach to Drinfeld–Jimbo quantum groups of finite type (embedding their "positive" subalgebras into q-deformed shuffle algebras) was first developed independently in the 1990s by J. Green, M. Rosso, and P. Schauenburg. Motivated by similar ideas, B. Feigin and A. Odesskii proposed a shuffle approach to elliptic quantum groups around the same time. The shuffle algebras in the present book can be viewed as trigonometric degenerations of the Feigin–Odesskii elliptic shuffle algebras. They provide combinatorial models for the "positive" subalgebras of quantum affine algebras in their loop realizations. These algebras appeared first in that context in the work of B. Enriquez. Over the last decade, the shuffle approach has been applied to various problems in combinatorics (combinatorics of Macdonald polynomials and Dyck paths, generalization to wreath Macdonald polynomials and operators), geometric representation theory (especially the study of quantum algebras’ actions on the equivariant K-theories of various moduli spaces such as affine Laumon spaces, Nakajima quiver varieties, nested Hilbert schemes), and mathematical physics (the Bethe ansatz, quantum Q-systems, and quantized Coulomb branches of quiver gauge theories, to name just a few). While this area is still under active investigation, the present book focuses on quantum affine/toroidal algebras of type A and their shuffle realization, which have already illustrated a broad spectrum of techniques. The basic results and structures discussed in the book are of crucial importance for studying intrinsic properties of quantum affinized algebras and are instrumental to the aforementioned applications.
Book Synopsis An Invitation to Noncommutative Geometry by : Masoud Khalkhali
Download or read book An Invitation to Noncommutative Geometry written by Masoud Khalkhali and published by World Scientific. This book was released on 2008 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.
Book Synopsis Lie Theory and Its Applications in Physics by : Vladimir Dobrev
Download or read book Lie Theory and Its Applications in Physics written by Vladimir Dobrev and published by Springer. This book was released on 2015-01-26 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear PDE, special functions, and others. Furthermore, the necessary tools from functional analysis and number theory are included. This is a big interdisciplinary and interrelated field. Samples of these fresh trends are presented in this volume, based on contributions from the Workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2013. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists and researchers in the field of Lie Theory.
Book Synopsis Handbook of Teichmüller Theory by : Athanase Papadopoulos
Download or read book Handbook of Teichmüller Theory written by Athanase Papadopoulos and published by European Mathematical Society. This book was released on 2007 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Book Synopsis Geometric Representation Theory and Gauge Theory by : Alexander Braverman
Download or read book Geometric Representation Theory and Gauge Theory written by Alexander Braverman and published by Springer Nature. This book was released on 2019-11-22 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg’s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov's notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration for PhD students and researchers.
Book Synopsis Encyclopedia of Nonlinear Science by : Alwyn Scott
Download or read book Encyclopedia of Nonlinear Science written by Alwyn Scott and published by Routledge. This book was released on 2006-05-17 with total page 1107 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
Book Synopsis Partitions, q-Series, and Modular Forms by : Krishnaswami Alladi
Download or read book Partitions, q-Series, and Modular Forms written by Krishnaswami Alladi and published by Springer Science & Business Media. This book was released on 2011-11-01 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
Book Synopsis Asymptotic Combinatorics with Application to Mathematical Physics by : V.A. Malyshev
Download or read book Asymptotic Combinatorics with Application to Mathematical Physics written by V.A. Malyshev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.