Industrial Recommender System

Download Industrial Recommender System PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981972581X
Total Pages : 256 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Industrial Recommender System by : Lantao Hu

Download or read book Industrial Recommender System written by Lantao Hu and published by Springer Nature. This book was released on with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Recommender System with Machine Learning and Artificial Intelligence

Download Recommender System with Machine Learning and Artificial Intelligence PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119711576
Total Pages : 448 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Recommender System with Machine Learning and Artificial Intelligence by : Sachi Nandan Mohanty

Download or read book Recommender System with Machine Learning and Artificial Intelligence written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2020-07-08 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Recommender Systems

Download Recommender Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319296590
Total Pages : 518 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems by : Charu C. Aggarwal

Download or read book Recommender Systems written by Charu C. Aggarwal and published by Springer. This book was released on 2016-03-28 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Recommender Systems

Download Recommender Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000387372
Total Pages : 182 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems by : P. Pavan Kumar

Download or read book Recommender Systems written by P. Pavan Kumar and published by CRC Press. This book was released on 2021-06-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems. The book examines several classes of recommendation algorithms, including Machine learning algorithms Community detection algorithms Filtering algorithms Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others. Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include A latent-factor technique for model-based filtering systems Collaborative filtering approaches Content-based approaches Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.

Recommender Systems Handbook

Download Recommender Systems Handbook PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 148997637X
Total Pages : 1008 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems Handbook by : Francesco Ricci

Download or read book Recommender Systems Handbook written by Francesco Ricci and published by Springer. This book was released on 2015-11-17 with total page 1008 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.

Recommender Systems for the Social Web

Download Recommender Systems for the Social Web PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642256945
Total Pages : 226 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems for the Social Web by : José J. Pazos Arias

Download or read book Recommender Systems for the Social Web written by José J. Pazos Arias and published by Springer Science & Business Media. This book was released on 2012-01-24 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recommendation of products, content and services cannot be considered newly born, although its widespread application is still in full swing. While its growing success in numerous sectors, the progress of the Social Web has revolutionized the architecture of participation and relationship in the Web, making it necessary to restate recommendation and reconciling it with Collaborative Tagging, as the popularization of authoring in the Web, and Social Networking, as the translation of personal relationships to the Web. Precisely, the convergence of recommendation with the above Social Web pillars is what motivates this book, which has collected contributions from well-known experts in the academy and the industry to provide a broader view of the problems that Social Recommenders might face with. If recommender systems have proven their key role in facilitating the user access to resources on the Web, when sharing resources has become social, it is natural for recommendation strategies in the Social Web era take into account the users’ point of view and the relationships among users to calculate their predictions. This book aims to help readers to discover and understand the interplay among legal issues such as privacy; technical aspects such as interoperability and scalability; and social aspects such as the influence of affinity, trust, reputation and likeness, when the goal is to offer recommendations that are truly useful to both the user and the provider.

Machine Learning Design Patterns

Download Machine Learning Design Patterns PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1098115759
Total Pages : 408 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Design Patterns by : Valliappa Lakshmanan

Download or read book Machine Learning Design Patterns written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2020-10-15 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly

Practical Recommender Systems

Download Practical Recommender Systems PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638353980
Total Pages : 743 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Practical Recommender Systems by : Kim Falk

Download or read book Practical Recommender Systems written by Kim Falk and published by Simon and Schuster. This book was released on 2019-01-18 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. About the Book Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows. What's inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python About the Reader Readers need intermediate programming and database skills. About the Author Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems. Table of Contents PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS What is a recommender? User behavior and how to collect it Monitoring the system Ratings and how to calculate them Non-personalized recommendations The user (and content) who came in from the cold PART 2 - RECOMMENDER ALGORITHMS Finding similarities among users and among content Collaborative filtering in the neighborhood Evaluating and testing your recommender Content-based filtering Finding hidden genres with matrix factorization Taking the best of all algorithms: implementing hybrid recommenders Ranking and learning to rank Future of recommender systems

Engineering MLOps

Download Engineering MLOps PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566328
Total Pages : 370 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Engineering MLOps by : Emmanuel Raj

Download or read book Engineering MLOps written by Emmanuel Raj and published by Packt Publishing Ltd. This book was released on 2021-04-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.

Encyclopedia of Machine Learning

Download Encyclopedia of Machine Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387307680
Total Pages : 1061 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Machine Learning by : Claude Sammut

Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Statistical Methods for Recommender Systems

Download Statistical Methods for Recommender Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316565130
Total Pages : 317 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Recommender Systems by : Deepak K. Agarwal

Download or read book Statistical Methods for Recommender Systems written by Deepak K. Agarwal and published by Cambridge University Press. This book was released on 2016-02-24 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

Recommender Systems

Download Recommender Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139492594
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems by : Dietmar Jannach

Download or read book Recommender Systems written by Dietmar Jannach and published by Cambridge University Press. This book was released on 2010-09-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.

Hands-On Recommendation Systems with Python

Download Hands-On Recommendation Systems with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788992539
Total Pages : 141 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Recommendation Systems with Python by : Rounak Banik

Download or read book Hands-On Recommendation Systems with Python written by Rounak Banik and published by Packt Publishing Ltd. This book was released on 2018-07-31 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web Key Features Build industry-standard recommender systems Only familiarity with Python is required No need to wade through complicated machine learning theory to use this book Book Description Recommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform. This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory—you'll get started with building and learning about recommenders as quickly as possible.. In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains. What you will learn Get to grips with the different kinds of recommender systems Master data-wrangling techniques using the pandas library Building an IMDB Top 250 Clone Build a content based engine to recommend movies based on movie metadata Employ data-mining techniques used in building recommenders Build industry-standard collaborative filters using powerful algorithms Building Hybrid Recommenders that incorporate content based and collaborative fltering Who this book is for If you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.

Building Recommender Systems with Machine Learning and AI.

Download Building Recommender Systems with Machine Learning and AI. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Building Recommender Systems with Machine Learning and AI. by : Frank Kane

Download or read book Building Recommender Systems with Machine Learning and AI. written by Frank Kane and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Automated recommendations are everywhere: Netflix, Amazon, YouTube, and more. Recommender systems learn about your unique interests and show the products or content they think you'll like best. Discover how to build your own recommender systems from one of the pioneers in the field. Frank Kane spent over nine years at Amazon, where he led the development of many of the company's personalized product recommendation technologies. In this course, he covers recommendation algorithms based on neighborhood-based collaborative filtering and more modern techniques, including matrix factorization and even deep learning with artificial neural networks. Along the way, you can learn from Frank's extensive industry experience and understand the real-world challenges of applying these algorithms at a large scale with real-world data. You can also go hands-on, developing your own framework to test algorithms and building your own neural networks using technologies like Amazon DSSTNE, AWS SageMaker, and TensorFlow.

Recommendation Engines

Download Recommendation Engines PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262358786
Total Pages : 306 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Recommendation Engines by : Michael Schrage

Download or read book Recommendation Engines written by Michael Schrage and published by MIT Press. This book was released on 2020-09-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: How companies like Amazon, Netflix, and Spotify know what "you might also like": the history, technology, business, and societal impact of online recommendation engines. Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences "you might also like."

Recommender Systems: Advanced Developments

Download Recommender Systems: Advanced Developments PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811224641
Total Pages : 362 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems: Advanced Developments by : Jie Lu

Download or read book Recommender Systems: Advanced Developments written by Jie Lu and published by World Scientific. This book was released on 2020-08-04 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.

Mahout in Action

Download Mahout in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638355371
Total Pages : 616 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Mahout in Action by : Sean Owen

Download or read book Mahout in Action written by Sean Owen and published by Simon and Schuster. This book was released on 2011-10-04 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java -- no prior experience with Mahout is assumed. Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me