Author : David Samuel Blum
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (131 download)
Book Synopsis Indirect Dark Matter Search with Neutrinos in JUNO and THEIA by : David Samuel Blum
Download or read book Indirect Dark Matter Search with Neutrinos in JUNO and THEIA written by David Samuel Blum and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive evidence from various astrophysical observations suggests that most of the matter in the universe is dark matter. However, the nature of dark matter is still unknown and remains one of the most prominent unanswered questions in physics today. A potential way to search for dark matter is the indirect dark matter search with neutrinos. It is based on the hypothesis that dark matter particles self-annihilate into neutrinos. This would result in a neutrino flux, which could be measured by neutrino detectors at Earth. In case of no excess signal is observed, a limit on the dark matter self-annihilation cross section can be set. The future neutrino detectors JUNO and THEIA can search for dark matter, especially for light dark matter particles with masses ranging from MeV to GeV. The search for such light dark matter particles has gained in importance in the last years as it extends the typical WIMP search to the sub-GeV mass range. In this work, the sensitivities of JUNO and THEIA to measure neutrinos from dark matter self-annihilation in the Milky Way as an excess over backgrounds are determined in detail for the first time. The work focuses on direct self-annihilation of light dark matter particles with masses ranging from 15 MeV to 100 MeV into neutrino-antineutrino pairs. The expected electron antineutrino signal measured through the inverse beta decay (IBD) reaction and all background contributions occurring in the visible energy region from 10 MeV to 100 MeV are determined for both detectors. To effectively reduce IBD-like background events of atmospheric neutrinos interacting via neutral current and of fast neutrons in JUNO, pulse shape discrimination is studied and applied in this work. THEIA would feature the separate measurement of Cherenkov and scintillation light. As a consequence, selection cuts on the ratio of measured Cherenkov to scintillation light and on the number of reconstructed Cherenkov rings are determined in this work, which can suppress atmospheric neutral current and fast neutron background events in THEIA with high efficiency. The sensitivities of JUNO and THEIA are determined using a Bayesian analysis and Markov Chain Monte Carlo sampling for dark matter masses ranging from 15 MeV to 100 MeV. JUNO will achieve the highest sensitivity for indirect dark matter search with neutrinos among existing neutrino detectors and will take a leading role in the indirect dark matter search in the upcoming years. The results of this work show for the first time that JUNO will improve the best currently existing 90 % C.L. upper limit of neutrino detectors on the dark matter self-annihilation cross section by a factor of 2 to 9 for 10 years of data taking. JUNO's potential to discover an electron antineutrino signal from dark matter self-annihilation in the Milky Way as an excess over backgrounds will be between 3 sigma and 5 sigma for most dark matter masses from 15 MeV to 100 MeV assuming an annihilation cross section that corresponds to the 90 % C.L. upper limit on the annihilation cross section of Super-K. This work moreover demonstrates that THEIA, if realized, could achieve a sensitivity comparable to JUNO.