Implementation and Transient Effects of Low Pressure EGR on Low Temperature Diesel Combustion

Download Implementation and Transient Effects of Low Pressure EGR on Low Temperature Diesel Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 190 pages
Book Rating : 4.:/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Implementation and Transient Effects of Low Pressure EGR on Low Temperature Diesel Combustion by : Chris Meyer

Download or read book Implementation and Transient Effects of Low Pressure EGR on Low Temperature Diesel Combustion written by Chris Meyer and published by . This book was released on 2010 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Transient Effects of Load and Speed on Low Temperature Diesel Combustion

Download Transient Effects of Load and Speed on Low Temperature Diesel Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 212 pages
Book Rating : 4.:/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Transient Effects of Load and Speed on Low Temperature Diesel Combustion by : Daniel Ryan Williams

Download or read book Transient Effects of Load and Speed on Low Temperature Diesel Combustion written by Daniel Ryan Williams and published by . This book was released on 2008 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Transient Comparison of High Pressure and Hybrid EGR Strategies on a Light Duty Diesel Engine Using Low Temperature Combustion

Download Transient Comparison of High Pressure and Hybrid EGR Strategies on a Light Duty Diesel Engine Using Low Temperature Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 260 pages
Book Rating : 4.:/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Transient Comparison of High Pressure and Hybrid EGR Strategies on a Light Duty Diesel Engine Using Low Temperature Combustion by : David J. Heuwetter

Download or read book Transient Comparison of High Pressure and Hybrid EGR Strategies on a Light Duty Diesel Engine Using Low Temperature Combustion written by David J. Heuwetter and published by . This book was released on 2012 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control

Download Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319067370
Total Pages : 197 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control by : Dr.-Ing. David Blanco-Rodriguez

Download or read book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control written by Dr.-Ing. David Blanco-Rodriguez and published by Springer. This book was released on 2014-05-19 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a complete new methodology for the on-board measurements and modeling of gas concentrations in turbocharged diesel engines. It provides the readers with a comprehensive review of the state-of-art in NOx and lambda estimation and describes new important achievements accomplished by the author. These include: the online characterization of lambda and NOx sensors; the development of control-oriented models of lambda and NOx emissions; the design of computationally efficient updating algorithms; and, finally, the application and evaluation of the methods on-board. Because of its technically oriented approach and innovative findings on both control-oriented algorithms and virtual sensing and observation, this book offers a practice-oriented guide for students, researchers and professionals working in the field of control and information engineering.

Modeling and Control of EGR on Marine Two-Stroke Diesel Engines

Download Modeling and Control of EGR on Marine Two-Stroke Diesel Engines PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176853683
Total Pages : 48 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Control of EGR on Marine Two-Stroke Diesel Engines by : Xavier Llamas

Download or read book Modeling and Control of EGR on Marine Two-Stroke Diesel Engines written by Xavier Llamas and published by Linköping University Electronic Press. This book was released on 2018-02-20 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Effects of Highly Cooled EGR on Modern Diesel Engine Performance at Low Temperature Combustion Condition

Download Effects of Highly Cooled EGR on Modern Diesel Engine Performance at Low Temperature Combustion Condition PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 12 pages
Book Rating : 4.:/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Effects of Highly Cooled EGR on Modern Diesel Engine Performance at Low Temperature Combustion Condition by : G. Avolio

Download or read book Effects of Highly Cooled EGR on Modern Diesel Engine Performance at Low Temperature Combustion Condition written by G. Avolio and published by . This book was released on 2007 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine

Download Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine by : Jonathan Robert Breen

Download or read book Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-duty, Four Cylinder Diesel Engine written by Jonathan Robert Breen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Investigation of Mixing and Temperature Effects on UHC/CO Emission for Highly Dilute Low Temperature Combustion in a Light-duty Diesel Engine

Download Investigation of Mixing and Temperature Effects on UHC/CO Emission for Highly Dilute Low Temperature Combustion in a Light-duty Diesel Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 440 pages
Book Rating : 4.:/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Investigation of Mixing and Temperature Effects on UHC/CO Emission for Highly Dilute Low Temperature Combustion in a Light-duty Diesel Engine by : Richard Michael Opat

Download or read book Investigation of Mixing and Temperature Effects on UHC/CO Emission for Highly Dilute Low Temperature Combustion in a Light-duty Diesel Engine written by Richard Michael Opat and published by . This book was released on 2006 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition (GCI)

Download Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition (GCI) PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 193 pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition (GCI) by : John Andrew Roberts

Download or read book Isolation of Fuel Property and Boundary Condition Effects on Low Load Gasoline Compression Ignition (GCI) written by John Andrew Roberts and published by . This book was released on 2018 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gasoline compression ignition (GCI) combustion is a promising solution to address increasingly stringent efficiency and emissions regulations imposed on the internal combustion engine. However, the high resistance to auto-ignition of modern market gasoline makes low load compression ignition operation difficult. The most comprehensive work focused on low load GCI operation has been performed on multi-cylinder research engines where it is difficult to decouple effects of the combustion event from air-handling and system level parameters (e.g., intake pressurization and exhaust gas recirculation (EGR)). Further, most research has focused on technology applications (e.g., use of variable valve actuation or supercharging) rather than fundamental effects, making identification of influential factors difficult. Accordingly, there is a need for detailed investigations focused on isolating the critical parameters that can be used to enable low load GCI operation. A full factorial parametric study was completed to isolate the effects of intake temperature, EGR rate, and fuel reactivity on low load performance. A minimum intake pressure metric was used to compare these parameters. This allowed combustion phasing and load to be held constant while isolating the experiment from fuel injection effects. The effort showed that increasing intake temperature yields a linear reduction in the minimum intake pressure required for stable operation. Adding a small amount of diesel fuel to gasoline improved combustion stability with minimal need for energy addition through intake pressurization. The minimum intake pressure requirement also showed very good correlation with the measured research octane number of the fuel. However, increasing the fuel reactivity with diesel fuel, caused NOx emissions to increase. Response model analysis was used to determine the intake conditions required to maintain NOx levels that may not require lean NOx after treatment. The combination of diesel fuel blending and EGR allowed NOx levels to be reduced to near zero values with the minimum intake pressurization required. A detailed investigation into the effects of EGR showed that, for a given fuel, there is a maximum EGR rate that allows for stable operation, which effectively constrains the minimum NOx prior to aftertreatment. Accordingly, a method that enables the variation of the fuel reactivity on demand is an ideal solution to address low load stability issues. Metal engine experiments conducted on a single cylinder medium-duty research engine allowed for the investigation of this strategy. The fuels used for this study were 87 octane gasoline (primary fuel stream) and diesel fuel (reactivity enhancer). Initial tests demonstrated load extension down to idle conditions with only 20% diesel by mass, which reduced to 0% at loads above 3 bar indicated mean effective pressure (IMEPg). Engine performance over a mode weighted drive cycle was completed based on work by the Ad-Hoc fuels committee [1] to demonstrate the performance of various levels of fuel blending for five primary modes of operation encompassing low load to high load. Lastly, several simulated transient drive cycle were analyzed to investigate the consumption rate of the reactivity enhancer. A response model was fit to the experimental data and exercised over the load based drive cycle. Results showed that the diesel consumption could be reduced to additive levels over a 10k mile oil change interval, lower than typical diesel exhaust fluid (DEF) consumption levels, which presents a pathway to a full-time GCI engine. Experimental efforts used a minimum intake pressure metric to evaluate the auto-ignition quality of seven fuels, including two pump fuels and five FACE gasolines in a GCI engine. The results showed that research octane number (RON) trends well with the intake pressure required to achieve a desired ignition delay at low-temperature conditions, which are representative of a boosted GCI engine. At higher temperature intake conditions poor correlation is observed between RON and intake pressure requirement. Effects of octane sensitivity were dominated by the general reactivity of fuel as characterized by RON. The Octane Index and K-factors were regressed for each operating condition, and good correlation was seen between the Octane Index and the intake pressure requirement. Main effects analysis of the impact of general properties of the fuel (RON, motor octane number (MON), and sensitivity (S)) on the intake pressure requirement showed that RON was the only statistically significant parameter. Analysis of the main effects of fuel composition on intake pressure requirement showed some trends, but none were statistically significant. This indicates that the auto-ignition quality of the fuel is not characterized by variations in any single species. Analysis of the stable start-of-injection (SOI) timing injection window showed that both RON and sensitivity describe stability at low temperatures. In general, a fuel with a higher RON will have a smaller stable SOI window than a lower RON fuel. Additionally, fuels with the same RON and different sensitivities will behave differently. Analysis showed that, for a given RON, a low sensitivity fuel would tend to have a wider operating window than a high sensitivity fuel. Analysis of the heat release for the experimental cases showed that this is due to the presence of low-temperature chemistry. Fuels that suppress low-temperature chemistry did not show low-temperature heat release (LTHR) and had a narrower stability window. At high temperatures, LTHR was suppressed for all fuels, as the temperature in the jet exceeded the ceiling temperature for low-temperature oxidation.

NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines

Download NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128242280
Total Pages : 488 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines by : B. Ashok

Download or read book NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines written by B. Ashok and published by Elsevier. This book was released on 2021-11-09 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles presents the fundamental theory of emission formation, particularly the oxides of nitrogen (NOx) and its chemical reactions and control techniques. The book provides a simplified framework for technical literature on NOx reduction strategies in IC engines, highlighting thermodynamics, combustion science, automotive emissions and environmental pollution control. Sections cover the toxicity and roots of emissions for both SI and CI engines and the formation of various emissions such as CO, SO2, HC, NOx, soot, and PM from internal combustion engines, along with various methods of NOx formation. Topics cover the combustion process, engine design parameters, and the application of exhaust gas recirculation for NOx reduction, making this book ideal for researchers and students in automotive, mechanical, mechatronics and chemical engineering students working in the field of emission control techniques. Covers advanced and recent technologies and emerging new trends in NOx reduction for emission control Highlights the effects of exhaust gas recirculation (EGR) on engine performance parameters Discusses emission norms such as EURO VI and Bharat stage VI in reducing global air pollution due to engine emissions

Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines

Download Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines by : Nathaniel Bryce Oliver

Download or read book Implementation and Control of Stoichiometric Natural Gas Combustion to Enable Low-emission Diesel Engines written by Nathaniel Bryce Oliver and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The expected growth in the heavy-duty transportation sector necessitates the development of engine technologies able to increase efficiency and reduce emissions without sacrificing power output. Previous research has demonstrated that reducing heat transfer losses from the cylinder can enable significant efficiency gains in Diesel engines. The high in-cylinder temperatures generated in this engine architecture enable the use of low-cetane fuels with the potential for low-soot operation. Low soot emissions allow the equivalence ratio to be increased to stoichiometric which increases power, and could allow the existing Diesel aftertreatment system to be replaced with a less-expensive three-way catalyst. Natural gas is a promising candidate for stoichiometric, high-temperature, Diesel-style combustion. Its high hydrogen-to-carbon ratio should be able to reduce both soot and carbon dioxide emissions, and its wide distribution as a commercial and residential fuel provides existing infrastructure to speed deployment in transportation applications. This thesis demonstrates stoichiometric, Diesel-style combustion of neat methane as a single-component surrogate for natural gas. It explores the challenges of injecting a gaseous fuel at high pressures, and demonstrates the fuel's capacity for low emissions. It then provides a preliminary investigation into multiple-injection strategies for controlling combustion behavior and emissions in a stoichiometric, high-temperature engine architecture. First, fuel system hardware is developed to enable gaseous operation and preliminary experimentation is accomplished with methane. A fuel compression system is designed to supply methane at pressures suitably high to achieve good mixing and short injection durations, and a solenoid-actuated Diesel fuel injector is modeled and modified to inject methane at these pressures. This fuel injection system is then implemented on a single-cylinder engine. An insulated piston face, air cooled head, and intake preheating achieve suitable start of injection temperatures to ignite methane. Intake preheating is varied at low equivalence ratios to determine the sensitivity of engine performance to temperature at the lowest-load, lowest-temperature conditions of interest. A sweep of equivalence ratio demonstrates soot emissions roughly four times the current EPA limit for heavy-duty vehicles and combustion efficiencies of approximately 92% at stoichiometric fuel loading. High soot levels and low combustion efficiencies are also seen at the lowest equivalence ratios investigated. This suggests poorly mixed combustion, and poor injector performance. Second, injector dynamics are examined in greater detailed, and emissions performance is characterized with improved injector performance. High-speed Schlieren imaging is able to determine the injection dynamics contributing to high low-load emissions. A parametric modeling investigation suggests that reducing the injector plunger length is able to remove flow rate oscillations seen at long injection durations, and that the addition of dry friction is able to reduce the magnitude of low-momentum post injections occurring after injector closing. Dry friction is implemented using PTFE O-rings installed between the injector body and plunger. Imaging is used to confirm that a shortened plunger is able to remove long-duration oscillations, and to determine the number of O-rings necessary to suitably reduce post injection magnitude. The improved injector is used to repeat the sweep of equivalence ratios and demonstrates improved soot emissions at all operating conditions. Most notably, low-load soot emissions are reduced by more than a factor of ten, demonstrating the effectiveness of improved injector performance for improving emissions. Techniques for further improving injector performance and potential changes to injector design are discussed. Finally, the prospects for controlling combustion in a stoichiometric, low heat rejection Diesel engine using multiple injections are discussed and experimentally investigated. The applications and effects of multiple injection strategies in traditional Diesel engines are explored, and their potential extension to stoichiometric engines is discussed. Methanol engine operation enables the use of a fast-actuating piezoinjector and the realization of short injection pulses. A range of two-injection strategies are implemented in order to determine the sensitivity of engine operation to pilot, split-main, and post-injection timing and duration. Small pilot injections are found to have control authority over rate of pressure rise and peak pressure and show some promise for improving combustion efficiency. Post injections demonstrate authority over peak pressure and combustion efficiency. All of these effects are accomplished with minimal impact on engine work output. The experiments of this thesis demonstrate that, even with course control of injection, high-temperature, stoichiometric combustion of methane is able to greatly reduce soot emissions over traditional Diesel engines. Improved injector dynamics and the implementation of multiple injection strategies further improve emissions and combustion performance, suggesting substantial room for refinement of the technology and motivating the continued development of injector hardware and injection strategies. The ability to operate a Diesel engine at stoichiometric fueled only by natural gas and to employ a three-way catalyst for emissions abatement makes this strategy a clean, efficient, high-torque, and low-cost solution for heavy-duty transportation.

Investigation Into the Emissions and Efficiency of Low Temperature Diesel Combustion

Download Investigation Into the Emissions and Efficiency of Low Temperature Diesel Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Investigation Into the Emissions and Efficiency of Low Temperature Diesel Combustion by : Bryan M. Knight

Download or read book Investigation Into the Emissions and Efficiency of Low Temperature Diesel Combustion written by Bryan M. Knight and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As global focus shifts towards the health and conservation of the planet, greater importance is placed upon the hazardous emissions of our fossil fuels, as well as their finite supply. These two areas remain intense topics of research in order to reduce green house gas emissions and increase the fuel efficiency of our vehicles. A particular solution to this problem is the diesel engine, with its inherently fuel-lean combustion, which gives rise to low CO2 production and higher efficiencies than its gasoline counterpart. Diesel engines, however, typically exhibit higher nitrogen oxides (NOx [NOx equal NO plus NO2, where NO is nitric oxide and NO2 is nitrogen dioxide]) and soot. There exists the possibility to simultaneously reduce both emissions with the application of low temperature diesel combustion (LTC). While exhibiting great characteristics in simultaneous reductions in nitrogen oxides and soot, LTC faces challenges with higher carbon monoxide (CO) and hydrocarbon (HC) emissions, as well as penalties in fuel efficiency. The following study examines the characteristics of LTC which contribute to the differences in emissions and efficiency compared to typical conventional diesel combustion. More specifically, key engine parameters which are used to enable LTC, such as EGR and fuel pressure are swept through a full range to determine their effects on each combustion regime. Analysis will focus on comparing both combustion regimes to determine how exhaust gas recirculation (EGR) and fuel pressure relate to lowering NO and smoke concentrations, and how these relate to a penalty in fuel efficiency. This study finds that the application of LTC is able to realize a 99 percent reduction in NO while simultaneously reducing smoke by 17 percent compared to the conventional combustion counterpart. Through a sweep increasing EGR, LTC is able to defeat the typical soot-- NO tradeoff; however, brake fuel conversion efficiency decreases 6.8 percent for LTC, while conventional combustion realizes a 4 percent increase in efficiency. The sweep of increasing fuel pressure confirms typical increases in NO and decreases in smoke for both LTC and conventional combustion; however, brake fuel conversion efficiency increases 2.3 percent for LTC and drops 4 percent for conventional combustion.

Introduction to Modeling and Control of Internal Combustion Engine Systems

Download Introduction to Modeling and Control of Internal Combustion Engine Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662080036
Total Pages : 303 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Modeling and Control of Internal Combustion Engine Systems by : Lino Guzzella

Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine

Download Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 250 pages
Book Rating : 4.:/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine by : Jonathan L. Burton

Download or read book Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine written by Jonathan L. Burton and published by . This book was released on 2008 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Download Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309159474
Total Pages : 251 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles by : National Research Council

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-07-30 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

New Technologies for Emission Control in Marine Diesel Engines

Download New Technologies for Emission Control in Marine Diesel Engines PDF Online Free

Author :
Publisher : Butterworth-Heinemann
ISBN 13 : 0128123087
Total Pages : 296 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis New Technologies for Emission Control in Marine Diesel Engines by : Masaaki Okubo

Download or read book New Technologies for Emission Control in Marine Diesel Engines written by Masaaki Okubo and published by Butterworth-Heinemann. This book was released on 2019-08-29 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Technologies for Emission Control in Marine Diesel Engines provides a unique overview on marine diesel engines and aftertreatment technologies that is based on the authors’ extensive experience in research and development of emission control systems, especially plasma aftertreatment systems. The book covers new and updated technologies, such as combustion improvement and after treatment, SCR, the NOx reduction method, Ox scrubber, DPF, Electrostatic precipitator, Plasma PM decomposition, Plasma NOx reduction, and the Exhaust gas recirculation method. This comprehensive resource is ideal for marine engineers, engine manufacturers and consultants dealing with the development and implementation of aftertreatment systems in marine engines. Includes recent advances and future trends of marine engines Discusses new and innovative emission technologies for marine diesel engines and their regulations Covers aftertreatment technologies that are not widely applied, such as catalysts, SCR, DPF and plasmas

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Download Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309373913
Total Pages : 812 pages
Book Rating : 4.3/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles by : National Research Council

Download or read book Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.