Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
High Dimensional Microarray Data Analysis
Download High Dimensional Microarray Data Analysis full books in PDF, epub, and Kindle. Read online High Dimensional Microarray Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Exploration and Analysis of DNA Microarray and Other High-Dimensional Data by : Dhammika Amaratunga
Download or read book Exploration and Analysis of DNA Microarray and Other High-Dimensional Data written by Dhammika Amaratunga and published by Wiley. This book was released on 2014-01-31 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition " ... extremely well written ... a comprehensive and up-to-date overview of this important field."--Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to.
Book Synopsis High-Dimensional Data Analysis in Cancer Research by : Xiaochun Li
Download or read book High-Dimensional Data Analysis in Cancer Research written by Xiaochun Li and published by Springer Science & Business Media. This book was released on 2008-12-19 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
Book Synopsis High-dimensional Microarray Data Analysis by : Shuichi Shinmura
Download or read book High-dimensional Microarray Data Analysis written by Shuichi Shinmura and published by Springer. This book was released on 2019-05-14 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.
Book Synopsis Advanced Analysis of Gene Expression Microarray Data by : Aidong Zhang
Download or read book Advanced Analysis of Gene Expression Microarray Data written by Aidong Zhang and published by World Scientific. This book was released on 2006 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on the development and application of the latest advanced data mining, machine learning, and visualization techniques for the identification of interesting, significant, and novel patterns in gene expression microarray data. Describes cutting-edge methods for analyzing gene expression microarray data. Coverage includes gene-based analysis, sample-based analysis, pattern-based analysis and visualization tools.
Book Synopsis Exploration and Analysis of DNA Microarray and Protein Array Data by : Dhammika Amaratunga
Download or read book Exploration and Analysis of DNA Microarray and Protein Array Data written by Dhammika Amaratunga and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cutting-edge guide to the analysis of DNA microarray data Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity. Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage. Highlights of the text include: A review of basic molecular biology, followed by an introduction to microarrays and their preparation Chapters on processing scanned images and preprocessing microarray data Methods for identifying differentially expressed genes in comparative microarray experiments Discussions of gene and sample clustering and class prediction Extension of analysis methods to protein array data Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.
Book Synopsis Statistical Analysis of Gene Expression Microarray Data by : Terry Speed
Download or read book Statistical Analysis of Gene Expression Microarray Data written by Terry Speed and published by CRC Press. This book was released on 2003-03-26 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies
Book Synopsis High-dimensional Data Analysis by : Tony Cai;Xiaotong Shen
Download or read book High-dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
Book Synopsis DNA Microarrays and Related Genomics Techniques by : David B. Allison
Download or read book DNA Microarrays and Related Genomics Techniques written by David B. Allison and published by CRC Press. This book was released on 2005-11-14 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches
Book Synopsis Exploration and Analysis of DNA Microarray and Other High-Dimensional Data by : Dhammika Amaratunga
Download or read book Exploration and Analysis of DNA Microarray and Other High-Dimensional Data written by Dhammika Amaratunga and published by John Wiley & Sons. This book was released on 2014-01-27 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “...extremely well written...a comprehensive and up-to-date overview of this important field.” – Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to study patterns of gene activity. The new edition answers the need for an efficient outline of all phases of this revolutionary analytical technique, from preprocessing to the analysis stage. Utilizing research and experience from highly-qualified authors in fields of data analysis, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition features: A new chapter on the interpretation of findings that includes a discussion of signatures and material on gene set analysis, including network analysis New topics of coverage including ABC clustering, biclustering, partial least squares, penalized methods, ensemble methods, and enriched ensemble methods Updated exercises to deepen knowledge of the presented material and provide readers with resources for further study The book is an ideal reference for scientists in biomedical and genomics research fields who analyze DNA microarrays and protein array data, as well as statisticians and bioinformatics practitioners. Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition is also a useful text for graduate-level courses on statistics, computational biology, and bioinformatics.
Book Synopsis Microarray Image and Data Analysis by : Luis Rueda
Download or read book Microarray Image and Data Analysis written by Luis Rueda and published by CRC Press. This book was released on 2018-09-03 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microarray Image and Data Analysis: Theory and Practice is a compilation of the latest and greatest microarray image and data analysis methods from the multidisciplinary international research community. Delivering a detailed discussion of the biological aspects and applications of microarrays, the book: Describes the key stages of image processing, gridding, segmentation, compression, quantification, and normalization Features cutting-edge approaches to clustering, biclustering, and the reconstruction of regulatory networks Covers different types of microarrays such as DNA, protein, tissue, and low- and high-density oligonucleotide arrays Examines the current state of various microarray technologies, including their availability and affordability Explains how data generated by microarray experiments are analyzed to obtain meaningful biological conclusions An essential reference for academia and industry, Microarray Image and Data Analysis: Theory and Practice provides readers with valuable tools and techniques that extend to a wide range of biological studies and microarray platforms.
Book Synopsis Data Mining and Bioinformatics by : Mehmet M Dalkilic
Download or read book Data Mining and Bioinformatics written by Mehmet M Dalkilic and published by Springer Science & Business Media. This book was released on 2006-12-21 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the First VLDB 2006 International Workshop on Data Mining and Bioinformatics, VDMB 2006, held in Seoul, Korea in September 2006 in conjunction with VLDB 2006. The 15 revised full papers cover various topics in the areas of microarray data analysis, bioinformatics system and text retrieval, application of gene expression data, and sequence analysis.
Book Synopsis Microarray Data Analysis by : Michael J. Korenberg
Download or read book Microarray Data Analysis written by Michael J. Korenberg and published by Springer Science & Business Media. This book was released on 2008-02-03 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new volume, renowned authors contribute fascinating, cutting-edge insights into microarray data analysis. Information on an array of topics is included in this innovative book including in-depth insights into presentations of genomic signal processing. Also detailed is the use of tiling arrays for large genomes analysis. The protocols follow the successful Methods in Molecular BiologyTM series format, offering step-by-step instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding pitfalls.
Book Synopsis Resampling-Based Multiple Testing by : Peter H. Westfall
Download or read book Resampling-Based Multiple Testing written by Peter H. Westfall and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.
Book Synopsis Gene Expression Data Analysis by : Pankaj Barah
Download or read book Gene Expression Data Analysis written by Pankaj Barah and published by CRC Press. This book was released on 2021-11-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge. Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data. Key Features: An introduction to the Central Dogma of molecular biology and information flow in biological systems A systematic overview of the methods for generating gene expression data Background knowledge on statistical modeling and machine learning techniques Detailed methodology of analyzing gene expression data with an example case study Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns Suitable for multidisciplinary researchers and practitioners in computer science and the biological sciences
Author :Jennifer S. Shoemaker Publisher :Springer Science & Business Media ISBN 13 :0387230777 Total Pages :266 pages Book Rating :4.3/5 (872 download)
Book Synopsis Methods of Microarray Data Analysis IV by : Jennifer S. Shoemaker
Download or read book Methods of Microarray Data Analysis IV written by Jennifer S. Shoemaker and published by Springer Science & Business Media. This book was released on 2006-01-16 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: As studies using microarray technology have evolved, so have the data analysis methods used to analyze these experiments. The CAMDA conference plays a role in this evolving field by providing a forum in which investors can analyze the same data sets using different methods. Methods of Microarray Data Analysis IV is the fourth book in this series, and focuses on the important issue of associating array data with a survival endpoint. Previous books in this series focused on classification (Volume I), pattern recognition (Volume II), and quality control issues (Volume III). In this volume, four lung cancer data sets are the focus of analysis. We highlight three tutorial papers, including one to assist with a basic understanding of lung cancer, a review of survival analysis in the gene expression literature, and a paper on replication. In addition, 14 papers presented at the conference are included. This book is an excellent reference for academic and industrial researchers who want to keep abreast of the state of the art of microarray data analysis. Jennifer Shoemaker is a faculty member in the Department of Biostatistics and Bioinformatics and the Director of the Bioinformatics Unit for the Cancer and Leukemia Group B Statistical Center, Duke University Medical Center. Simon Lin is a faculty member in the Department of Biostatistics and Bioinformatics and the Manager of the Duke Bioinformatics Shared Resource, Duke University Medical Center.
Book Synopsis Knowledge-Based Intelligent Information and Engineering Systems by : Bogdan Gabrys
Download or read book Knowledge-Based Intelligent Information and Engineering Systems written by Bogdan Gabrys and published by Springer Science & Business Media. This book was released on 2006-09-27 with total page 1360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 4251, LNAI 4252, and LNAI 4253 constitutes the refereed proceedings of the 10th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2006, held in Bournemouth, UK in October 2006. The 480 revised papers presented were carefully reviewed and selected from about 1400 submissions. The papers present a wealth of original research results from the field of intelligent information processing.
Book Synopsis The First Discriminant Theory of Linearly Separable Data by : Shuichi Shinmura
Download or read book The First Discriminant Theory of Linearly Separable Data written by Shuichi Shinmura and published by Springer Nature. This book was released on with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: