Global Attractors Of Nonautonomous Dissipative Dynamical Systems

Download Global Attractors Of Nonautonomous Dissipative Dynamical Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814481866
Total Pages : 524 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Global Attractors Of Nonautonomous Dissipative Dynamical Systems by : David N Cheban

Download or read book Global Attractors Of Nonautonomous Dissipative Dynamical Systems written by David N Cheban and published by World Scientific. This book was released on 2004-11-29 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations. Intended for experts in qualitative theory of differential equations, dynamical systems and their applications, this accessible book can also serve as an important resource for senior students and lecturers.

Global Attractors of Non-autonomous Dissipative Dynamical Systems

Download Global Attractors of Non-autonomous Dissipative Dynamical Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812563083
Total Pages : 524 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Global Attractors of Non-autonomous Dissipative Dynamical Systems by : David N. Cheban

Download or read book Global Attractors of Non-autonomous Dissipative Dynamical Systems written by David N. Cheban and published by World Scientific. This book was released on 2004 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.

Nonautonomous Dynamical Systems

Download Nonautonomous Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821868713
Total Pages : 274 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Nonautonomous Dynamical Systems by : Peter E. Kloeden

Download or read book Nonautonomous Dynamical Systems written by Peter E. Kloeden and published by American Mathematical Soc.. This book was released on 2011-08-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition)

Download Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814619841
Total Pages : 616 pages
Book Rating : 4.8/5 (146 download)

DOWNLOAD NOW!


Book Synopsis Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition) by : David N Cheban

Download or read book Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition) written by David N Cheban and published by World Scientific. This book was released on 2014-12-15 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems — the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions — published in the works of author in recent years.

Attractors for Equations of Mathematical Physics

Download Attractors for Equations of Mathematical Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829505
Total Pages : 377 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Attractors for Equations of Mathematical Physics by : Vladimir V. Chepyzhov

Download or read book Attractors for Equations of Mathematical Physics written by Vladimir V. Chepyzhov and published by American Mathematical Soc.. This book was released on 2002 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.

An Introduction To Nonautonomous Dynamical Systems And Their Attractors

Download An Introduction To Nonautonomous Dynamical Systems And Their Attractors PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811228671
Total Pages : 157 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis An Introduction To Nonautonomous Dynamical Systems And Their Attractors by : Peter Kloeden

Download or read book An Introduction To Nonautonomous Dynamical Systems And Their Attractors written by Peter Kloeden and published by World Scientific. This book was released on 2020-11-25 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.

Attractors Under Autonomous and Non-autonomous Perturbations

Download Attractors Under Autonomous and Non-autonomous Perturbations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470453088
Total Pages : 246 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Attractors Under Autonomous and Non-autonomous Perturbations by : Matheus C. Bortolan

Download or read book Attractors Under Autonomous and Non-autonomous Perturbations written by Matheus C. Bortolan and published by American Mathematical Soc.. This book was released on 2020-05-29 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the attractor. This is done in both the autonomous (time independent) and non-autonomous (time dependent) framework in four distinct levels of approximation: the upper semicontinuity, lower semicontinuity, topological structural stability and geometrical structural stability. This book is aimed at graduate students and researchers interested in dissipative dynamical systems and stability theory, and requires only a basic background in metric spaces, functional analysis and, for the applications, techniques of ordinary and partial differential equations.

Monotone Nonautonomous Dynamical Systems

Download Monotone Nonautonomous Dynamical Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031600576
Total Pages : 475 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Monotone Nonautonomous Dynamical Systems by : David N. Cheban

Download or read book Monotone Nonautonomous Dynamical Systems written by David N. Cheban and published by Springer Nature. This book was released on with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Nonautonomous Dynamics

Download Nonautonomous Dynamics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030342921
Total Pages : 434 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Nonautonomous Dynamics by : David N. Cheban

Download or read book Nonautonomous Dynamics written by David N. Cheban and published by Springer Nature. This book was released on 2020-01-22 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).

Dynamical Systems in Population Biology

Download Dynamical Systems in Population Biology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217614
Total Pages : 285 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems in Population Biology by : Xiao-Qiang Zhao

Download or read book Dynamical Systems in Population Biology written by Xiao-Qiang Zhao and published by Springer Science & Business Media. This book was released on 2013-06-05 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.

Dynamical Systems and Numerical Analysis

Download Dynamical Systems and Numerical Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521645638
Total Pages : 708 pages
Book Rating : 4.6/5 (456 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Numerical Analysis by : Andrew Stuart

Download or read book Dynamical Systems and Numerical Analysis written by Andrew Stuart and published by Cambridge University Press. This book was released on 1998-11-28 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulated as dynamical systems and the convergence and stability properties of the methods are examined.

Lyapunov Stability of Non-autonomous Dynamical Systems

Download Lyapunov Stability of Non-autonomous Dynamical Systems PDF Online Free

Author :
Publisher : Nova Science Publishers
ISBN 13 : 9781626189263
Total Pages : 0 pages
Book Rating : 4.1/5 (892 download)

DOWNLOAD NOW!


Book Synopsis Lyapunov Stability of Non-autonomous Dynamical Systems by : David N. Cheban

Download or read book Lyapunov Stability of Non-autonomous Dynamical Systems written by David N. Cheban and published by Nova Science Publishers. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation of the modern theory of stability was created in the works of A Poincare and A M Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the elements of the asymptotic stability theory of general non-autonomous dynamical systems in metric spaces with an emphasis on the application for different classes of non-autonomous evolution equations (Ordinary Differential Equations (ODEs), Difference Equations (DEs), Functional-Differential Equations (FDEs), Semi-Linear Parabolic Equations etc). The basic results of this book are contained in the courses of lectures which the author has given during many years for the students of the State University of Moldova.This book is intended for mathematicians (scientists and university professors) who are working in the field of stability theory of differential/difference equations, dynamical systems and control theory. It would also be of use for the graduate and post graduate student who is interested in the theory of dynamical systems and its applications. The reader needs no deep knowledge of special branches of mathematics, although it should be easier for readers who know the fundamentals concepts of the theory of metric spaces, qualitative theory of differential/difference equations and dynamical systems.

Infinite-Dimensional Dynamical Systems

Download Infinite-Dimensional Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521632041
Total Pages : 488 pages
Book Rating : 4.6/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Infinite-Dimensional Dynamical Systems by : James C. Robinson

Download or read book Infinite-Dimensional Dynamical Systems written by James C. Robinson and published by Cambridge University Press. This book was released on 2001-04-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.

New Trends in Stochastic Analysis and Related Topics

Download New Trends in Stochastic Analysis and Related Topics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814360910
Total Pages : 458 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Stochastic Analysis and Related Topics by : Huaizhong Zhao

Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Nonlinear Dynamics and Chaos

Download Nonlinear Dynamics and Chaos PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429961111
Total Pages : 532 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Almost Periodic Functions and Differential Equations

Download Almost Periodic Functions and Differential Equations PDF Online Free

Author :
Publisher : CUP Archive
ISBN 13 : 9780521244077
Total Pages : 232 pages
Book Rating : 4.2/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Almost Periodic Functions and Differential Equations by : B. M. Levitan

Download or read book Almost Periodic Functions and Differential Equations written by B. M. Levitan and published by CUP Archive. This book was released on 1982-12-02 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems

Download Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844873
Total Pages : 186 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems by : Hal L. Smith

Download or read book Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems written by Hal L. Smith and published by American Mathematical Soc.. This book was released on 1995 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.