Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Download Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387499571
Total Pages : 460 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics by : Marco Pettini

Download or read book Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics written by Marco Pettini and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.

Differential Geometry and Topology

Download Differential Geometry and Topology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584882534
Total Pages : 408 pages
Book Rating : 4.8/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Topology by : Keith Burns

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Geometric Theory of Dynamical Systems

Download Geometric Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461257034
Total Pages : 208 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis

Download or read book Geometric Theory of Dynamical Systems written by J. Jr. Palis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Geometry, Topology, and Dynamics in Negative Curvature

Download Geometry, Topology, and Dynamics in Negative Curvature PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110752900X
Total Pages : 378 pages
Book Rating : 4.1/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Topology, and Dynamics in Negative Curvature by : C. S. Aravinda

Download or read book Geometry, Topology, and Dynamics in Negative Curvature written by C. S. Aravinda and published by Cambridge University Press. This book was released on 2016-01-21 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ten high-quality survey articles provide an overview of important recent developments in the mathematics surrounding negative curvature.

Geometry, Topology And Dynamics Of Character Varieties

Download Geometry, Topology And Dynamics Of Character Varieties PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814401374
Total Pages : 362 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Topology And Dynamics Of Character Varieties by : William Goldman

Download or read book Geometry, Topology And Dynamics Of Character Varieties written by William Goldman and published by World Scientific. This book was released on 2012-06-18 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010.Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, introductions to Lorenzian and complex hyperbolic geometry, and representation varieties of surface groups into PSL(2, ℝ) and other semi-simple Lie groups. This volume will serve as a useful portal to students and researchers in a vibrant and multi-faceted area of mathematics.

Foliations: Dynamics, Geometry and Topology

Download Foliations: Dynamics, Geometry and Topology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3034808712
Total Pages : 207 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Foliations: Dynamics, Geometry and Topology by : Masayuki Asaoka

Download or read book Foliations: Dynamics, Geometry and Topology written by Masayuki Asaoka and published by Springer. This book was released on 2014-10-07 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods converging in the study of foliations. The lectures by Aziz El Kacimi Alaoui provide an introduction to Foliation Theory with emphasis on examples and transverse structures. Steven Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations: limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, Pesin Theory and hyperbolic, parabolic and elliptic types of foliations. The lectures by Masayuki Asaoka compute the leafwise cohomology of foliations given by actions of Lie groups, and apply it to describe deformation of those actions. In his lectures, Ken Richardson studies the properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will be interesting for mathematicians interested in the applications to foliations of subjects like Topology of Manifolds, Differential Geometry, Dynamics, Cohomology or Global Analysis.

Geometry and Dynamics of Groups and Spaces

Download Geometry and Dynamics of Groups and Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764386088
Total Pages : 759 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Dynamics of Groups and Spaces by : Mikhail Kapranov

Download or read book Geometry and Dynamics of Groups and Spaces written by Mikhail Kapranov and published by Springer Science & Business Media. This book was released on 2008-03-05 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.

Symplectic Geometry and Topology

Download Symplectic Geometry and Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821886892
Total Pages : 452 pages
Book Rating : 4.8/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Topology by : Yakov Eliashberg

Download or read book Symplectic Geometry and Topology written by Yakov Eliashberg and published by American Mathematical Soc.. This book was released on 2004 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Elements of Topological Dynamics

Download Elements of Topological Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401581711
Total Pages : 762 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Elements of Topological Dynamics by : J. de Vries

Download or read book Elements of Topological Dynamics written by J. de Vries and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Applications of Contact Geometry and Topology in Physics

Download Applications of Contact Geometry and Topology in Physics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814412090
Total Pages : 492 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Applications of Contact Geometry and Topology in Physics by : Arkady Leonidovich Kholodenko

Download or read book Applications of Contact Geometry and Topology in Physics written by Arkady Leonidovich Kholodenko and published by World Scientific. This book was released on 2013 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.

Topological Dynamical Systems

Download Topological Dynamical Systems PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110342405
Total Pages : 516 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Topological Dynamical Systems by : Jan Vries

Download or read book Topological Dynamical Systems written by Jan Vries and published by Walter de Gruyter. This book was released on 2014-01-31 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

An Introduction to the Geometry and Topology of Fluid Flows

Download An Introduction to the Geometry and Topology of Fluid Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401004463
Total Pages : 346 pages
Book Rating : 4.4/5 (1 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Geometry and Topology of Fluid Flows by : Renzo L. Ricca

Download or read book An Introduction to the Geometry and Topology of Fluid Flows written by Renzo L. Ricca and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts present a unique, invaluable introduction to the study of the geometry and typology of fluid flows. From basic motions on curves and surfaces to the recent developments in knots and links, the reader is gradually led to explore the fascinating world of geometric and topological fluid mechanics. Geodesics and chaotic orbits, magnetic knots and vortex links, continual flows and singularities become alive with more than 160 figures and examples. In the opening article, H. K. Moffatt sets the pace, proposing eight outstanding problems for the 21st century. The book goes on to provide concepts and techniques for tackling these and many other interesting open problems.

Differential Topology and Geometry with Applications to Physics

Download Differential Topology and Geometry with Applications to Physics PDF Online Free

Author :
Publisher :
ISBN 13 : 9780750320726
Total Pages : 0 pages
Book Rating : 4.3/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Differential Topology and Geometry with Applications to Physics by : Eduardo Nahmad-Achar

Download or read book Differential Topology and Geometry with Applications to Physics written by Eduardo Nahmad-Achar and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics." -- Prové de l'editor.

Introduction to Dynamical Systems

Download Introduction to Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9781107538948
Total Pages : 0 pages
Book Rating : 4.5/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Dynamical Systems by : Michael Brin

Download or read book Introduction to Dynamical Systems written by Michael Brin and published by Cambridge University Press. This book was released on 2015-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.

Geometry, Dynamics And Topology Of Foliations: A First Course

Download Geometry, Dynamics And Topology Of Foliations: A First Course PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813207094
Total Pages : 194 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Dynamics And Topology Of Foliations: A First Course by : Bruno Scardua

Download or read book Geometry, Dynamics And Topology Of Foliations: A First Course written by Bruno Scardua and published by World Scientific. This book was released on 2017-02-16 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments.In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations.

Lectures on Fractal Geometry and Dynamical Systems

Download Lectures on Fractal Geometry and Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848895
Total Pages : 334 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Fractal Geometry and Dynamical Systems by : Ya. B. Pesin

Download or read book Lectures on Fractal Geometry and Dynamical Systems written by Ya. B. Pesin and published by American Mathematical Soc.. This book was released on 2009 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Geometry, Topology and Physics

Download Geometry, Topology and Physics PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1420056948
Total Pages : 596 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Topology and Physics by : Mikio Nakahara

Download or read book Geometry, Topology and Physics written by Mikio Nakahara and published by Taylor & Francis. This book was released on 2018-10-03 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.