Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometric Theory Of Semilinear Parabolic Equations
Download Geometric Theory Of Semilinear Parabolic Equations full books in PDF, epub, and Kindle. Read online Geometric Theory Of Semilinear Parabolic Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Geometric Theory of Semilinear Parabolic Equations by : Daniel Henry
Download or read book Geometric Theory of Semilinear Parabolic Equations written by Daniel Henry and published by Springer. This book was released on 2006-11-15 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Geometric Theory of Semilinear Parabolic Equations by : Dan Henry
Download or read book Geometric Theory of Semilinear Parabolic Equations written by Dan Henry and published by . This book was released on 1975 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Blow-up Theories for Semilinear Parabolic Equations by : Bei Hu
Download or read book Blow-up Theories for Semilinear Parabolic Equations written by Bei Hu and published by Springer Science & Business Media. This book was released on 2011-03-23 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.
Book Synopsis From Finite to Infinite Dimensional Dynamical Systems by : James Robinson
Download or read book From Finite to Infinite Dimensional Dynamical Systems written by James Robinson and published by Springer Science & Business Media. This book was released on 2001-05-31 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995
Book Synopsis Fractional-in-Time Semilinear Parabolic Equations and Applications by : Ciprian G. Gal
Download or read book Fractional-in-Time Semilinear Parabolic Equations and Applications written by Ciprian G. Gal and published by Springer Nature. This book was released on 2020-09-23 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra–Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology, whose research involves partial differential equations.
Book Synopsis Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics by : Tian Ma
Download or read book Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics written by Tian Ma and published by American Mathematical Soc.. This book was released on 2005 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.
Book Synopsis Global Solution Curves For Semilinear Elliptic Equations by : Philip Korman
Download or read book Global Solution Curves For Semilinear Elliptic Equations written by Philip Korman and published by World Scientific. This book was released on 2012-02-10 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented.The author is one of the original contributors to the field of exact multiplicity results.
Book Synopsis Dynamics of Macrosystems by : Jean-P. Aubin
Download or read book Dynamics of Macrosystems written by Jean-P. Aubin and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Optimal Control of Differential Equations by : Nicolae H. Pavel
Download or read book Optimal Control of Differential Equations written by Nicolae H. Pavel and published by CRC Press. This book was released on 2020-08-19 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"
Book Synopsis Dynamics of Evolutionary Equations by : George R. Sell
Download or read book Dynamics of Evolutionary Equations written by George R. Sell and published by Springer Science & Business Media. This book was released on 2002-01-02 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. Dynamical issues arise in equations that attempt to model phenomena that change with time. The infi nite dimensional aspects occur when forces that describe the motion depend on spatial variables, or on the history of the motion. In the case of spatially depen dent problems, the model equations are generally partial differential equations, and problems that depend on the past give rise to differential-delay equations. Because the nonlinearities occurring in thse equations need not be small, one needs good dynamical theories to understand the longtime behavior of solutions. Our basic objective in writing this book is to prepare an entree for scholars who are beginning their journey into the world of dynamical systems, especially in infinite dimensional spaces. In order to accomplish this, we start with the key concepts of a semiflow and a flow. As is well known, the basic elements of dynamical systems, such as the theory of attractors and other invariant sets, have their origins here.
Book Synopsis Partial Differential Equations III by : Michael E. Taylor
Download or read book Partial Differential Equations III written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Book Synopsis World Congress of Nonlinear Analysts '92 by : V. Lakshmikantham
Download or read book World Congress of Nonlinear Analysts '92 written by V. Lakshmikantham and published by Walter de Gruyter. This book was released on 2011-11-14 with total page 4040 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Progress In Analysis, Proceedings Of The 3rd Isaac Congress (In 2 Volumes) by : Heinrich G W Begehr
Download or read book Progress In Analysis, Proceedings Of The 3rd Isaac Congress (In 2 Volumes) written by Heinrich G W Begehr and published by World Scientific. This book was released on 2003-08-04 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting.
Author :International Society for Analysis, Applications, and Computation. Congress Publisher :World Scientific ISBN 13 :9812794255 Total Pages :737 pages Book Rating :4.8/5 (127 download)
Book Synopsis Progress in Analysis by : International Society for Analysis, Applications, and Computation. Congress
Download or read book Progress in Analysis written by International Society for Analysis, Applications, and Computation. Congress and published by World Scientific. This book was released on 2003-01-01 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."
Book Synopsis The Graduate Student’s Guide to Numerical Analysis ’98 by : Mark Ainsworth
Download or read book The Graduate Student’s Guide to Numerical Analysis ’98 written by Mark Ainsworth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics, with each set of notes presenting a self-contained guide to a current research area and supplemented by an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. They start from a level suitable for first year graduates in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Readers will thus quickly gain an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described, and directions for future research given.
Book Synopsis Positive Solutions to Indefinite Problems by : Guglielmo Feltrin
Download or read book Positive Solutions to Indefinite Problems written by Guglielmo Feltrin and published by Springer. This book was released on 2018-11-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research can be obtained and presented in a penetrable way. In particular, the book focuses on second order nonlinear differential equations. It analyzes the Dirichlet, Neumann and periodic boundary value problems associated with the equation and provides existence, nonexistence and multiplicity results for positive solutions. The author proposes a new approach based on topological degree theory that allows him to answer some open questions and solve a conjecture about the dependence of the number of positive solutions on the nodal behaviour of the nonlinear term of the equation. The new technique developed in the book gives, as a byproduct, infinitely many subharmonic solutions and globally defined positive solutions with chaotic behaviour. Furthermore, some future directions for research, open questions and interesting, unexplored topics of investigation are proposed.
Book Synopsis Inertial Manifolds for Partly Dissipative Reaction Diffusion Systems in Higher Space Dimensions by : Zhoude Shao
Download or read book Inertial Manifolds for Partly Dissipative Reaction Diffusion Systems in Higher Space Dimensions written by Zhoude Shao and published by . This book was released on 1994 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: