Geometric Dynamics

Download Geometric Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792364016
Total Pages : 416 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Geometric Dynamics by : Constantin Udriște

Download or read book Geometric Dynamics written by Constantin Udriște and published by Springer Science & Business Media. This book was released on 2000 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theme of this text is the philosophy that any particle flow generates a particle dynamics, in a suitable geometrical framework. It covers topics that include: geometrical and physical vector fields; field lines; flows; stability of equilibrium points; potential systems and catastrophe geometry; field hypersurfaces; bifurcations; distribution orthogonal to a vector field; extrema with nonholonomic constraints; thermodynamic systems; energies; geometric dynamics induced by a vector field; magnetic fields around piecewise rectilinear electric circuits; geometric magnetic dynamics; and granular materials and their mechanical behaviour. The text should be useful for first-year graduate students in mathematics, mechanics, physics, engineering, biology, chemistry, and economics. It can also be addressed to professors and researchers whose work involves mathematics, mechanics, physics, engineering, biology, chemistry, and economics.

Geometric Dynamics

Download Geometric Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401141878
Total Pages : 406 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Geometric Dynamics by : C. Udriste

Download or read book Geometric Dynamics written by C. Udriste and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc.

Geometric Theory of Dynamical Systems

Download Geometric Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461257034
Total Pages : 208 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis

Download or read book Geometric Theory of Dynamical Systems written by J. Jr. Palis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Geometry from Dynamics, Classical and Quantum

Download Geometry from Dynamics, Classical and Quantum PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401792208
Total Pages : 739 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Geometry from Dynamics, Classical and Quantum by : José F. Cariñena

Download or read book Geometry from Dynamics, Classical and Quantum written by José F. Cariñena and published by Springer. This book was released on 2014-09-23 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.

Geometric Dynamics

Download Geometric Dynamics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540409696
Total Pages : 835 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Geometric Dynamics by : J.Jr. Palis

Download or read book Geometric Dynamics written by J.Jr. Palis and published by Springer. This book was released on 2006-11-15 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry, Mechanics, and Dynamics

Download Geometry, Mechanics, and Dynamics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493924419
Total Pages : 506 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Mechanics, and Dynamics by : Dong Eui Chang

Download or read book Geometry, Mechanics, and Dynamics written by Dong Eui Chang and published by Springer. This book was released on 2015-04-16 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.

Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Download Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319569538
Total Pages : 561 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds by : Taeyoung Lee

Download or read book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds written by Taeyoung Lee and published by Springer. This book was released on 2017-08-14 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Download Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387499571
Total Pages : 460 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics by : Marco Pettini

Download or read book Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics written by Marco Pettini and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.

Geometric Phases in Classical and Quantum Mechanics

Download Geometric Phases in Classical and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817681760
Total Pages : 346 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Geometric Phases in Classical and Quantum Mechanics by : Dariusz Chruscinski

Download or read book Geometric Phases in Classical and Quantum Mechanics written by Dariusz Chruscinski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.

Geometric Dynamics

Download Geometric Dynamics PDF Online Free

Author :
Publisher : Lecture Notes in Mathematics
ISBN 13 :
Total Pages : 850 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Geometric Dynamics by : Instituto de Matemática Pura e Aplicada

Download or read book Geometric Dynamics written by Instituto de Matemática Pura e Aplicada and published by Lecture Notes in Mathematics. This book was released on 1983-09 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dynamical Systems in Neuroscience

Download Dynamical Systems in Neuroscience PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262514206
Total Pages : 459 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems in Neuroscience by : Eugene M. Izhikevich

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Geometric Mechanics: Dynamics and symmetry

Download Geometric Mechanics: Dynamics and symmetry PDF Online Free

Author :
Publisher : Imperial College Press
ISBN 13 : 1848161956
Total Pages : 375 pages
Book Rating : 4.8/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Geometric Mechanics: Dynamics and symmetry by : Darryl D. Holm

Download or read book Geometric Mechanics: Dynamics and symmetry written by Darryl D. Holm and published by Imperial College Press. This book was released on 2008-01-01 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate and graduate students in mathematics, physics and engineering.

Geometric Formulation of Classical and Quantum Mechanics

Download Geometric Formulation of Classical and Quantum Mechanics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814313726
Total Pages : 405 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Geometric Formulation of Classical and Quantum Mechanics by : G. Giachetta

Download or read book Geometric Formulation of Classical and Quantum Mechanics written by G. Giachetta and published by World Scientific. This book was released on 2011 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.

Geometric Mechanics and Symmetry

Download Geometric Mechanics and Symmetry PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199212902
Total Pages : 537 pages
Book Rating : 4.1/5 (992 download)

DOWNLOAD NOW!


Book Synopsis Geometric Mechanics and Symmetry by : Darryl D. Holm

Download or read book Geometric Mechanics and Symmetry written by Darryl D. Holm and published by Oxford University Press. This book was released on 2009-07-30 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.

The Geometry of Physics

Download The Geometry of Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139505610
Total Pages : 749 pages
Book Rating : 4.1/5 (395 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Physics by : Theodore Frankel

Download or read book The Geometry of Physics written by Theodore Frankel and published by Cambridge University Press. This book was released on 2011-11-03 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.

Geometric Quantization and Quantum Mechanics

Download Geometric Quantization and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461260663
Total Pages : 241 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization and Quantum Mechanics by : Jedrzej Sniatycki

Download or read book Geometric Quantization and Quantum Mechanics written by Jedrzej Sniatycki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.

Dynamics, Statistics and Projective Geometry of Galois Fields

Download Dynamics, Statistics and Projective Geometry of Galois Fields PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139493442
Total Pages : 91 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Dynamics, Statistics and Projective Geometry of Galois Fields by : V. I. Arnold

Download or read book Dynamics, Statistics and Projective Geometry of Galois Fields written by V. I. Arnold and published by Cambridge University Press. This book was released on 2010-12-02 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.