Geomechanical Development of Fractured Reservoirs During Gas Production

Download Geomechanical Development of Fractured Reservoirs During Gas Production PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (869 download)

DOWNLOAD NOW!


Book Synopsis Geomechanical Development of Fractured Reservoirs During Gas Production by : Jian Huang

Download or read book Geomechanical Development of Fractured Reservoirs During Gas Production written by Jian Huang and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between gas desorption and rock matrix/fracture deformation, a poroelastic constitutive relation is developed and used for deformation of gas shale. Local continuity equation of dry gas model is developed by considering the mass conservation of gas, including both free and absorbed phases. The absorbed gas content and the sorption-induced volumetric strain are described through a Langmiur-type equation. A general porosity model that differs from other empirical correlations in the literature is developed and utilized in a finite element model to coupled gas diffusion and rock mass deformation. The dual permeability method (DPM) is implemented into the Finite Element Model (FEM) to investigate fracture deformation and closure and its impact on gas flow in naturally fractured reservoir. Within the framework of DPM, the fractured reservoir is treated as dual continuum. Two independent but overlapping meshes (or elements) are used to represent these kinds of reservoirs: one is the matrix elements used for deformation and fluid flow within matrix domain; while the other is the fracture element simulating the fluid flow only through the fractures. Both matrix and fractures are assumed to be permeable and can accomodate fluid transported. A quasi steady-state function is used to quantify the flow that is transferred between rock mass and fractures. By implementing the idea of equivalent fracture permeability and shape-factor within the transfer function into DPM, the fracture geometry and orientation are numerically considered and the complexity of the problem is well reduced. Both the normal deformation and shear dilation of fractures are considered and the stress-dependent fracture aperture can be updated in time. Further, a non-linear numerical model is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir. The viscoelastic effect is addressed in both deviatoric and symmetric effective stresses to emphasize the effect of shear strain localization on fracture shear dilation. The new mechanical model is first verified with an analytical solution in a simple wellbore creep problem and then compared with the poroelastic solution in both wellbore and field cases. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149448

Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Download Geomechanics and Hydraulic Fracturing for Shale Reservoirs PDF Online Free

Author :
Publisher : Scientific Research Publishing, Inc. USA
ISBN 13 : 1618968963
Total Pages : 383 pages
Book Rating : 4.6/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Geomechanics and Hydraulic Fracturing for Shale Reservoirs by : Yu Wang

Download or read book Geomechanics and Hydraulic Fracturing for Shale Reservoirs written by Yu Wang and published by Scientific Research Publishing, Inc. USA. This book was released on 2020-07-01 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Unconventional Reservoir Geomechanics

Download Unconventional Reservoir Geomechanics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107087074
Total Pages : 495 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Unconventional Reservoir Geomechanics by : Mark D. Zoback

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Reservoir Geomechanics

Download Reservoir Geomechanics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107320089
Total Pages : 505 pages
Book Rating : 4.1/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Reservoir Geomechanics by : Mark D. Zoback

Download or read book Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2010-04-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.

Advances in the Study of Fractured Reservoirs

Download Advances in the Study of Fractured Reservoirs PDF Online Free

Author :
Publisher : Geological Society of London
ISBN 13 : 1862393559
Total Pages : 421 pages
Book Rating : 4.8/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Advances in the Study of Fractured Reservoirs by : G.H. Spence

Download or read book Advances in the Study of Fractured Reservoirs written by G.H. Spence and published by Geological Society of London. This book was released on 2014-08-27 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.

Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs

Download Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319775014
Total Pages : 166 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs by : Nelson Enrique Barros Galvis

Download or read book Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs written by Nelson Enrique Barros Galvis and published by Springer. This book was released on 2018-05-02 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.

Geomechanics of Oil and Gas Wells

Download Geomechanics of Oil and Gas Wells PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030266087
Total Pages : 166 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Geomechanics of Oil and Gas Wells by : Vladimir Karev

Download or read book Geomechanics of Oil and Gas Wells written by Vladimir Karev and published by Springer Nature. This book was released on 2019-08-21 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an integrated approach to studying the geomechanical processes occurring in oil and gas-bearing formations during their development. It discusses the choice of a model that takes into account the basic properties of rocks; experiments to find model parameters; numerical modeling; and direct physical modeling of deformation and filtration processes in reservoir and host rocks. Taking into account features of rock behavior, such as anisotropy of the mechanical properties of rocks during elastoplastic deformation; dependence of permeability on the total stress tensor; the contribution of the filtration flow to the formation stress state; and the influence of tangential as well as normal stresses on the transition to inelastic deformation, it demonstrates how the presented approach allows the practical problems of increasing the productivity of wells, oil recovery, and ensuring the stability of wellbores to be solved. The book is intended for specialists, including geoengineers working in the oil and gas sector, teachers, graduate students and students, as well as all those interested in scientific and technological developments to meet the enormous demand for raw materials and energy.

Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration

Download Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration by : V. Kuuskraa

Download or read book Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration written by V. Kuuskraa and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins where natural fractures play an important role in reservoir permeability. Potential uses for these learnings and tools range from rank exploration to field-development portfolio management. Early incorporation of the permeability development concepts presented here can improve basin assessment and direct focus to the high potential areas within basins. Insight into production variability inherent in tight naturally fractured reservoirs leads to improved wellbore evaluation and reduces the incidence of premature exits from high potential plays. A significant conclusion of this project is that natural fractures, while often an important, overlooked aspect of reservoir geology, represent only one aspect of the overall reservoir fabric. A balanced perspective encompassing all aspects of reservoir geology will have the greatest impact on exploration and development in the low permeability gas setting.

Geomechanics in Reservoir Simulation

Download Geomechanics in Reservoir Simulation PDF Online Free

Author :
Publisher : Editions TECHNIP
ISBN 13 : 9782710808336
Total Pages : 208 pages
Book Rating : 4.8/5 (83 download)

DOWNLOAD NOW!


Book Synopsis Geomechanics in Reservoir Simulation by : Pascal Longuemare

Download or read book Geomechanics in Reservoir Simulation written by Pascal Longuemare and published by Editions TECHNIP. This book was released on 2002 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Unconventional Reservoir Geomechanics

Download Unconventional Reservoir Geomechanics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108653111
Total Pages : 495 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Unconventional Reservoir Geomechanics by : Mark D. Zoback

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the US shale gas revolution in 2005, the development of unconventional oil and gas resources has gathered tremendous pace around the world. This book provides a comprehensive overview of the key geologic, geophysical, and engineering principles that govern the development of unconventional reservoirs. The book begins with a detailed characterization of unconventional reservoir rocks: their composition and microstructure, mechanical properties, and the processes controlling fault slip and fluid flow. A discussion of geomechanical principles follows, including the state of stress, pore pressure, and the importance of fractures and faults. After reviewing the fundamentals of horizontal drilling, multi-stage hydraulic fracturing, and stimulation of slip on pre-existing faults, the key factors impacting hydrocarbon production are explored. The final chapters cover environmental impacts and how to mitigate hazards associated with induced seismicity. This text provides an essential overview for students, researchers, and industry professionals interested in unconventional reservoirs.

Geomechanical Studies of the Barnett Shale, Texas, USA

Download Geomechanical Studies of the Barnett Shale, Texas, USA PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 143 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Geomechanical Studies of the Barnett Shale, Texas, USA by : John Peter Vermylen

Download or read book Geomechanical Studies of the Barnett Shale, Texas, USA written by John Peter Vermylen and published by Stanford University. This book was released on 2011 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.

Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures

Download Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031565258
Total Pages : 169 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures by : Juan Pedro Morales Salazar

Download or read book Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures written by Juan Pedro Morales Salazar and published by Springer Nature. This book was released on with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity

Download Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 188 pages
Book Rating : 4.:/5 (776 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity by : Himanshu Yadav

Download or read book Hydraulic Fracturing in Naturally Fractured Reservoirs and the Impact of Geomechanics on Microseismicity written by Himanshu Yadav and published by . This book was released on 2011 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing in tight gas and shale gas reservoirs is an essential stimulation technique for production enhancement. Often, hydraulic fracturing induces fracture patterns that are more complex than the planar geometry that has been assumed in the past models. These complex patterns arise as a result of the presence of planes of weakness, faults and/or natural fractures. In this thesis, two different 3D geomechanical models have been developed to simulate the interaction between the hydraulic fracture and the natural fractures, and to observe the impact of geomechanics on the potential microseismicity in these naturally fractured formations. Several cases were studied to observe the effects of natural fracture geometry, fracturing treatment, mechanical properties of the sealed fractures, etc. on the propagation path of the hydraulic fracture in these formations, and were found to be consistent with past experimental results. Moreover, the effects of several parameters including cohesiveness of the sealed natural fractures, mechanical properties of the formation, treatment parameters, etc. have been studied from the potential microseismicity standpoint. It is shown that the impact of geomechanics on potential microseismicity is significant and can influence the desired fracture spacing. In this thesis, the presented model quantifies the extent of potential microseismic volume (MSV) resulting from hydraulic fracturing in unconventional reservoirs. The model accounts for random geometries of the weak planes (with different dip and strike) observed in the field. The work presented here shows, for the first time, a fracture treatment can be designed to maximize the MSV, when the fractures form a complicated network of fractures, and in turn influence the desired fracture spacing in horizontal wells. Our work shows that by adjusting the fluid rheology and other treatment parameters, the spatial extent of MSV and the desired fracture spacing can be optimized for a given set of shale properties.

Multiphase Fluid Flow in Porous and Fractured Reservoirs

Download Multiphase Fluid Flow in Porous and Fractured Reservoirs PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128039116
Total Pages : 420 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Multiphase Fluid Flow in Porous and Fractured Reservoirs by : Yu-Shu Wu

Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Geomechanical Aspects of Operation of Underground Gas Storage

Download Geomechanical Aspects of Operation of Underground Gas Storage PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303134765X
Total Pages : 157 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Geomechanical Aspects of Operation of Underground Gas Storage by : Vladimir Karev

Download or read book Geomechanical Aspects of Operation of Underground Gas Storage written by Vladimir Karev and published by Springer Nature. This book was released on 2023-07-25 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the most important and urgent problems arising during the operation of underground gas storage facilities (UGS) and associated with the destruction of the reservoir and sand production into the wells. UGS facilities play a special role in ensuring high reliability of stable and guaranteed gas supplies to consumers. However, despite many years of experience in UGS well operation, there is still no sufficiently substantiated geomechanical model of reservoir failure and a mathematical description of the processes occurring in the reservoir-well system, taking into account the peculiarities of the mechanical behavior of reservoir rocks during cyclic injection and extraction of gas. As a result, there are no reliable criteria for establishing a rational regime for the operation of an UGS wells in conditions of a possible destruction of reservoir rocks. Further development of underground gas storage direction requires the introduction of innovative technologies that can be used both in the design of new UGS facilities and to extend the safe and efficient operation of existing underground gas storage facilities. To solve these problems, the most promising technologies, taking into account their efficiency, relatively low cost and environmental safety, are those based on the geomechanical approach. The book is addressed to specialists in the development and operation of underground gas storage facilities, as well as specialists in geomechanics of oil and gas fields. It can be useful for students and graduate students studying in the speciality "Development of oil and gas fields".

Petroleum Related Rock Mechanics

Download Petroleum Related Rock Mechanics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080557090
Total Pages : 515 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Petroleum Related Rock Mechanics by : Erling Fjær

Download or read book Petroleum Related Rock Mechanics written by Erling Fjær and published by Elsevier. This book was released on 2008-01-04 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. Learn the basic principles behind rock mechanics from leading academic and industry experts Quick reference and guide for engineers and geologists working in the field Keep informed and up to date on all the latest methods and fundamental concepts

Hydraulic Fracture Modeling

Download Hydraulic Fracture Modeling PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128129999
Total Pages : 568 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Modeling by : Yu-Shu Wu

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies