Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Gauss And Jacobi Sums
Download Gauss And Jacobi Sums full books in PDF, epub, and Kindle. Read online Gauss And Jacobi Sums ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Gauss and Jacobi Sums by : Bruce C. Berndt
Download or read book Gauss and Jacobi Sums written by Bruce C. Berndt and published by Wiley-Interscience. This book was released on 1998-06 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devised in the 19th century, Gauss and Jacobi Sums are classical formulas that form the basis for contemporary research in many of today's sciences. This book offers readers a solid grounding on the origin of these abstract, general theories. Though the main focus is on Gauss and Jacobi, the book does explore other relevant formulas, including Cauchy.
Book Synopsis Hadamard Matrices by : Jennifer Seberry
Download or read book Hadamard Matrices written by Jennifer Seberry and published by John Wiley & Sons. This book was released on 2020-08-25 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-date resource on Hadamard matrices Hadamard Matrices: Constructions using Number Theory and Algebra provides students with a discussion of the basic definitions used for Hadamard Matrices as well as more advanced topics in the subject, including: Gauss sums, Jacobi sums and relative Gauss sums Cyclotomic numbers Plug-in matrices, arrays, sequences and M-structure Galois rings and Menon Hadamard differences sets Paley difference sets and Paley type partial difference sets Symmetric Hadamard matrices, skew Hadamard matrices and amicable Hadamard matrices A discussion of asymptotic existence of Hadamard matrices Maximal determinant matrices, embeddability of Hadamard matrices and growth problem for Hadamard matrices The book can be used as a textbook for graduate courses in combinatorics, or as a reference for researchers studying Hadamard matrices. Utilized in the fields of signal processing and design experiments, Hadamard matrices have been used for 150 years, and remain practical today. Hadamard Matrices combines a thorough discussion of the basic concepts underlying the subject matter with more advanced applications that will be of interest to experts in the area.
Book Synopsis A Classical Introduction to Modern Number Theory by : K. Ireland
Download or read book A Classical Introduction to Modern Number Theory written by K. Ireland and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.
Download or read book 特殊函数 written by George E. Andrews and published by 清华大学出版社有限公司. This book was released on 2004 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Finite Fields by : Gary L. Mullen
Download or read book Handbook of Finite Fields written by Gary L. Mullen and published by CRC Press. This book was released on 2013-06-17 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and
Book Synopsis Reciprocity Laws by : Franz Lemmermeyer
Download or read book Reciprocity Laws written by Franz Lemmermeyer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the development of reciprocity laws, starting from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers knowledgeable in basic algebraic number theory and Galois theory will find detailed discussions of the reciprocity laws for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity laws, and Eisensteins reciprocity law. An extensive bibliography will be of interest to readers interested in the history of reciprocity laws or in the current research in this area.
Book Synopsis Numerical Algorithms for Number Theory: Using Pari/GP by : Karim Belabas
Download or read book Numerical Algorithms for Number Theory: Using Pari/GP written by Karim Belabas and published by American Mathematical Soc.. This book was released on 2021-06-23 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
Book Synopsis Finite Fields and Applications by : Dieter Jungnickel
Download or read book Finite Fields and Applications written by Dieter Jungnickel and published by Springer Science & Business Media. This book was released on 2001-03-20 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (University ofKarlsruhe), Stephen D. Cohen (University of Glasgow), Dieter Jungnickel (University of Augsburg, Chairman), Alfred Menezes (University of Waterloo), Gary L. Mullen (Pennsylvania State University), Ronald C. Mullin (University of Waterloo), Harald Niederreiter (Austrian Academy of Sciences), and Alexander Pott (University of Magdeburg). The program ofthe conference consisted offour full days and one halfday ofsessions, with 11 invited plenary talks andover80contributedtalks that re- quired three parallel sessions. This documents the steadily increasing interest in finite fields and their applications. Finite fields have an inherently fasci- nating structure and they are important tools in discrete mathematics. Their applications range from combinatorial design theory, finite geometries, and algebraic geometry to coding theory, cryptology, and scientific computing. A particularly fruitful aspect is the interplay between theory and applications which has led to many new perspectives in research on finite fields.
Book Synopsis Algebraic Geometry, Arcata 1974 by : Robin Hartshorne
Download or read book Algebraic Geometry, Arcata 1974 written by Robin Hartshorne and published by American Mathematical Soc.. This book was released on 1975-12-31 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Arithmetic Geometry over Global Function Fields by : Gebhard Böckle
Download or read book Arithmetic Geometry over Global Function Fields written by Gebhard Böckle and published by Springer. This book was released on 2014-11-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.
Download or read book Prime Numbers written by Richard Crandall and published by Springer Science & Business Media. This book was released on 2006-04-07 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
Book Synopsis Function Field Arithmetic by : Dinesh S. Thakur
Download or read book Function Field Arithmetic written by Dinesh S. Thakur and published by World Scientific. This book was released on 2004 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
Book Synopsis Hadamard Matrices by : Jennifer Seberry
Download or read book Hadamard Matrices written by Jennifer Seberry and published by John Wiley & Sons. This book was released on 2020-08-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-date resource on Hadamard matrices Hadamard Matrices: Constructions using Number Theory and Algebra provides students with a discussion of the basic definitions used for Hadamard Matrices as well as more advanced topics in the subject, including: Gauss sums, Jacobi sums and relative Gauss sums Cyclotomic numbers Plug-in matrices, arrays, sequences and M-structure Galois rings and Menon Hadamard differences sets Paley difference sets and Paley type partial difference sets Symmetric Hadamard matrices, skew Hadamard matrices and amicable Hadamard matrices A discussion of asymptotic existence of Hadamard matrices Maximal determinant matrices, embeddability of Hadamard matrices and growth problem for Hadamard matrices The book can be used as a textbook for graduate courses in combinatorics, or as a reference for researchers studying Hadamard matrices. Utilized in the fields of signal processing and design experiments, Hadamard matrices have been used for 150 years, and remain practical today. Hadamard Matrices combines a thorough discussion of the basic concepts underlying the subject matter with more advanced applications that will be of interest to experts in the area.
Book Synopsis Cryptology and Computational Number Theory by : Carl Pomerance
Download or read book Cryptology and Computational Number Theory written by Carl Pomerance and published by American Mathematical Soc.. This book was released on 1990 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principal advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudorandom number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at nonexperts, including graduate students and advanced undergraduates in mathematics and computer science.
Book Synopsis Hypergeometric Functions Over Finite Fields by : Jenny Fuselier
Download or read book Hypergeometric Functions Over Finite Fields written by Jenny Fuselier and published by American Mathematical Society. This book was released on 2022-11-10 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Book Synopsis Arithmetic of Finite Fields by : Charles Small
Download or read book Arithmetic of Finite Fields written by Charles Small and published by CRC Press. This book was released on 1991-04-24 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text for a one-semester course at the advanced undergraduate/beginning graduate level, or reference for algebraists and mathematicians interested in algebra, algebraic geometry, and number theory, examines counting or estimating numbers of solutions of equations in finite fields concentrating on top
Book Synopsis Special Functions by : George E. Andrews
Download or read book Special Functions written by George E. Andrews and published by Cambridge University Press. This book was released on 1999 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.