Fractional Sobolev Spaces and Inequalities

Download Fractional Sobolev Spaces and Inequalities PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009254634
Total Pages : 169 pages
Book Rating : 4.0/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Fractional Sobolev Spaces and Inequalities by : D. E. Edmunds

Download or read book Fractional Sobolev Spaces and Inequalities written by D. E. Edmunds and published by Cambridge University Press. This book was released on 2022-10-31 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an account of fractional Sobolev spaces emphasising applications to famous inequalities. Ideal for graduates and researchers.

Fractional Differentiation Inequalities

Download Fractional Differentiation Inequalities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387981284
Total Pages : 672 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Fractional Differentiation Inequalities by : George A. Anastassiou

Download or read book Fractional Differentiation Inequalities written by George A. Anastassiou and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.

Aspects of Sobolev-Type Inequalities

Download Aspects of Sobolev-Type Inequalities PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521006071
Total Pages : 204 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Aspects of Sobolev-Type Inequalities by : L. Saloff-Coste

Download or read book Aspects of Sobolev-Type Inequalities written by L. Saloff-Coste and published by Cambridge University Press. This book was released on 2002 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on Poincaré, Nash and other Sobolev-type inequalities and their applications to the Laplace and heat diffusion equations on Riemannian manifolds, this text is an advanced graduate book that will also suit researchers.

A First Course in Fractional Sobolev Spaces

Download A First Course in Fractional Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470468980
Total Pages : 605 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Fractional Sobolev Spaces by : Giovanni Leoni

Download or read book A First Course in Fractional Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Society. This book was released on 2023-04-12 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.

An Introduction to Sobolev Spaces and Interpolation Spaces

Download An Introduction to Sobolev Spaces and Interpolation Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540714839
Total Pages : 219 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Sobolev Spaces and Interpolation Spaces by : Luc Tartar

Download or read book An Introduction to Sobolev Spaces and Interpolation Spaces written by Luc Tartar and published by Springer Science & Business Media. This book was released on 2007-05-26 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.

Concentration Compactness

Download Concentration Compactness PDF Online Free

Author :
Publisher : Imperial College Press
ISBN 13 : 1860947972
Total Pages : 279 pages
Book Rating : 4.8/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Concentration Compactness by : Kyril Tintarev

Download or read book Concentration Compactness written by Kyril Tintarev and published by Imperial College Press. This book was released on 2007 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration compactness is an important method in mathematical analysis which has been widely used in mathematical research for two decades. This unique volume fulfills the need for a source book that usefully combines a concise formulation of the method, a range of important applications to variational problems, and background material concerning manifolds, non-compact transformation groups and functional spaces. Highlighting the role in functional analysis of invariance and, in particular, of non-compact transformation groups, the book uses the same building blocks, such as partitions of domain and partitions of range, relative to transformation groups, in the proofs of energy inequalities and in the weak convergence lemmas.

Lebesgue and Sobolev Spaces with Variable Exponents

Download Lebesgue and Sobolev Spaces with Variable Exponents PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642183638
Total Pages : 516 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening

Download or read book Lebesgue and Sobolev Spaces with Variable Exponents written by Lars Diening and published by Springer. This book was released on 2011-03-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.

A First Course in Sobolev Spaces

Download A First Course in Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847686
Total Pages : 626 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Sobolev Spaces by : Giovanni Leoni

Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.

Classical Fourier Analysis

Download Classical Fourier Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387094326
Total Pages : 494 pages
Book Rating : 4.3/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Classical Fourier Analysis by : Loukas Grafakos

Download or read book Classical Fourier Analysis written by Loukas Grafakos and published by Springer Science & Business Media. This book was released on 2008-09-18 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Semilinear Elliptic Equations for Beginners

Download Semilinear Elliptic Equations for Beginners PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857292277
Total Pages : 204 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Semilinear Elliptic Equations for Beginners by : Marino Badiale

Download or read book Semilinear Elliptic Equations for Beginners written by Marino Badiale and published by Springer Science & Business Media. This book was released on 2010-12-07 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.

Papers on Analysis

Download Papers on Analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9789513911201
Total Pages : 315 pages
Book Rating : 4.9/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Papers on Analysis by : Juha Heinonen

Download or read book Papers on Analysis written by Juha Heinonen and published by . This book was released on 2001 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fractional-Order Equations and Inclusions

Download Fractional-Order Equations and Inclusions PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110521555
Total Pages : 506 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Fractional-Order Equations and Inclusions by : Michal Fečkan

Download or read book Fractional-Order Equations and Inclusions written by Michal Fečkan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-11-07 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. Contents Fractional Difference Equations Fractional Integral Equations Fractional Differential Equations Fractional Evolution Equations: Continued Fractional Differential Inclusions

The obstacle problem

Download The obstacle problem PDF Online Free

Author :
Publisher : Edizioni della Normale
ISBN 13 : 9788876422492
Total Pages : 0 pages
Book Rating : 4.4/5 (224 download)

DOWNLOAD NOW!


Book Synopsis The obstacle problem by : Luis Angel Caffarelli

Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

Distributions, Sobolev Spaces, Elliptic Equations

Download Distributions, Sobolev Spaces, Elliptic Equations PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190425
Total Pages : 312 pages
Book Rating : 4.1/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Distributions, Sobolev Spaces, Elliptic Equations by : Dorothee Haroske

Download or read book Distributions, Sobolev Spaces, Elliptic Equations written by Dorothee Haroske and published by European Mathematical Society. This book was released on 2007 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the main aim of this book to develop at an accessible, moderate level an $L_2$ theory for elliptic differential operators of second order on bounded smooth domains in Euclidean n-space, including a priori estimates for boundary-value problems in terms of (fractional) Sobolev spaces on domains and on their boundaries, together with a related spectral theory. The presentation is preceded by an introduction to the classical theory for the Laplace-Poisson equation, and some chapters provide required ingredients such as the theory of distributions, Sobolev spaces and the spectral theory in Hilbert spaces. The book grew out of two-semester courses the authors have given several times over a period of ten years at the Friedrich Schiller University of Jena. It is addressed to graduate students and mathematicians who have a working knowledge of calculus, measure theory and the basic elements of functional analysis (as usually covered by undergraduate courses) and who are seeking an accessible introduction to some aspects of the theory of function spaces and its applications to elliptic equations.

Weighted Sobolev Spaces

Download Weighted Sobolev Spaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 130 pages
Book Rating : 4.:/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Weighted Sobolev Spaces by : Alois Kufner

Download or read book Weighted Sobolev Spaces written by Alois Kufner and published by . This book was released on 1985-07-23 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.

Intelligent Analysis: Fractional Inequalities and Approximations Expanded

Download Intelligent Analysis: Fractional Inequalities and Approximations Expanded PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386368
Total Pages : 525 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Analysis: Fractional Inequalities and Approximations Expanded by : George A. Anastassiou

Download or read book Intelligent Analysis: Fractional Inequalities and Approximations Expanded written by George A. Anastassiou and published by Springer Nature. This book was released on 2020-01-15 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann–Liouville type and related results including inequalities. We examine the case of low order Riemann–Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar’s well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.

Function Spaces and Potential Theory

Download Function Spaces and Potential Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662032821
Total Pages : 372 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces and Potential Theory by : David R. Adams

Download or read book Function Spaces and Potential Theory written by David R. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society