Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Fixed Point Theory For Decomposable Sets
Download Fixed Point Theory For Decomposable Sets full books in PDF, epub, and Kindle. Read online Fixed Point Theory For Decomposable Sets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Fixed Point Theory for Decomposable Sets by : Andrzej Fryszkowski
Download or read book Fixed Point Theory for Decomposable Sets written by Andrzej Fryszkowski and published by Springer Science & Business Media. This book was released on 2006-02-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if (Q) for all and measurable A. This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property. Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.
Book Synopsis Topological Fixed Point Theory of Multivalued Mappings by : Lech Górniewicz
Download or read book Topological Fixed Point Theory of Multivalued Mappings written by Lech Górniewicz and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.
Book Synopsis Solution Sets for Differential Equations and Inclusions by : Smaïl Djebali
Download or read book Solution Sets for Differential Equations and Inclusions written by Smaïl Djebali and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.
Book Synopsis Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications by : Valeri Obukhovskii
Download or read book Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications written by Valeri Obukhovskii and published by World Scientific. This book was released on 2020-04-04 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.
Book Synopsis Fixed Point Theory in Probabilistic Metric Spaces by : O. Hadzic
Download or read book Fixed Point Theory in Probabilistic Metric Spaces written by O. Hadzic and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
Book Synopsis Fractional Difference, Differential Equations, and Inclusions by : Saïd Abbas
Download or read book Fractional Difference, Differential Equations, and Inclusions written by Saïd Abbas and published by Elsevier. This book was released on 2024-01-16 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of fractional calculus (FC) is more than 300 years old, and it presumably stemmed from a question about a fractional-order derivative raised in communication between L'Hopital and Leibniz in the year 1695. This branch of mathematical analysis is regarded as the generalization of classical calculus, as it deals with the derivative and integral operators of fractional order. The tools of fractional calculus are found to be of great utility in improving the mathematical modeling of many natural phenomena and processes occurring in the areas of engineering, social, natural, and biomedical sciences. Fractional Difference, Differential Equations, and Inclusions: Analysis and Stability is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for several classes of functional fractional difference equations and inclusions. Some equations include delay effects of finite, infinite, or state-dependent nature. Others are subject to impulsive effect which may be fixed or non-instantaneous. The tools used to establish the existence results for the proposed problems include fixed point theorems, densifiability techniques, monotone iterative technique, notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. All the abstract results are illustrated by examples in applied mathematics, engineering, biomedical, and other applied sciences. Introduces notation, definitions, and foundational concepts of fractional q-calculus Presents existence and attractivity results for a class of implicit fractional q-difference equations in Banach and Fréchet spaces Focuses on the study of a class of coupled systems of Hilfer and Hilfer-Hadamard fractional differential equations
Book Synopsis Method of Guiding Functions in Problems of Nonlinear Analysis by : Valeri Obukhovskii
Download or read book Method of Guiding Functions in Problems of Nonlinear Analysis written by Valeri Obukhovskii and published by Springer. This book was released on 2013-05-13 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
Book Synopsis Set-Valued Stochastic Integrals and Applications by : Michał Kisielewicz
Download or read book Set-Valued Stochastic Integrals and Applications written by Michał Kisielewicz and published by Springer Nature. This book was released on 2020-06-26 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is among the first concise presentations of the set-valued stochastic integration theory as well as its natural applications, as well as the first to contain complex approach theory of set-valued stochastic integrals. Taking particular consideration of set-valued Itô , set-valued stochastic Lebesgue, and stochastic Aumann integrals, the volume is divided into nine parts. It begins with preliminaries of mathematical methods that are then applied in later chapters containing the main results and some of their applications, and contains many new problems. Methods applied in the book are mainly based on functional analysis, theory of probability processes, and theory of set-valued mappings. The volume will appeal to students of mathematics, economics, and engineering, as well as to mathematics professionals interested in applications of the theory of set-valued stochastic integrals.
Book Synopsis Nonlinear Analysis - Theory and Methods by : Nikolaos S. Papageorgiou
Download or read book Nonlinear Analysis - Theory and Methods written by Nikolaos S. Papageorgiou and published by Springer. This book was released on 2019-02-26 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Book Synopsis Research Topics in Analysis, Volume I by : Shouchuan Hu
Download or read book Research Topics in Analysis, Volume I written by Shouchuan Hu and published by Springer Nature. This book was released on 2022-11-29 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems – handy for understanding and self-study – and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.
Author :Nikolaos S. Papageorgiou Publisher :Walter de Gruyter GmbH & Co KG ISBN 13 :3111288323 Total Pages :1003 pages Book Rating :4.1/5 (112 download)
Book Synopsis Applied Nonlinear Functional Analysis by : Nikolaos S. Papageorgiou
Download or read book Applied Nonlinear Functional Analysis written by Nikolaos S. Papageorgiou and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-07-01 with total page 1003 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
Book Synopsis Fixed Point Theory, Variational Analysis, and Optimization by : Saleh Abdullah R. Al-Mezel
Download or read book Fixed Point Theory, Variational Analysis, and Optimization written by Saleh Abdullah R. Al-Mezel and published by CRC Press. This book was released on 2014-06-03 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis—fixed point theory, variational inequalities, and vector optimization—but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems.
Book Synopsis Continuous Selections of Multivalued Mappings by : D. Repovs
Download or read book Continuous Selections of Multivalued Mappings written by D. Repovs and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the theory of continuous selections of multi valued mappings, a classical area of mathematics (as far as the formulation of its fundamental problems and methods of solutions are concerned) as well as !'J-n area which has been intensively developing in recent decades and has found various applications in general topology, theory of absolute retracts and infinite-dimensional manifolds, geometric topology, fixed-point theory, functional and convex analysis, game theory, mathematical economics, and other branches of modern mathematics. The fundamental results in this the ory were laid down in the mid 1950's by E. Michael. The book consists of (relatively independent) three parts - Part A: Theory, Part B: Results, and Part C: Applications. (We shall refer to these parts simply by their names). The target audience for the first part are students of mathematics (in their senior year or in their first year of graduate school) who wish to get familiar with the foundations of this theory. The goal of the second part is to give a comprehensive survey of the existing results on continuous selections of multivalued mappings. It is intended for specialists in this area as well as for those who have mastered the material of the first part of the book. In the third part we present important examples of applications of continuous selections. We have chosen examples which are sufficiently interesting and have played in some sense key role in the corresponding areas of mathematics.
Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Relaxation in Optimization Theory and Variational Calculus by : Tomáš Roubíček
Download or read book Relaxation in Optimization Theory and Variational Calculus written by Tomáš Roubíček and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-11-09 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.
Book Synopsis Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications by : Afif Ben Amar
Download or read book Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications written by Afif Ben Amar and published by Springer. This book was released on 2016-05-04 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.
Book Synopsis Topological Methods in Nonlinear Analysis by :
Download or read book Topological Methods in Nonlinear Analysis written by and published by . This book was released on 2006 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: