First Principles Monte Carlo Simulation of Charge Transport in Semiconductors

Download First Principles Monte Carlo Simulation of Charge Transport in Semiconductors PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 180 pages
Book Rating : 4.:/5 (312 download)

DOWNLOAD NOW!


Book Synopsis First Principles Monte Carlo Simulation of Charge Transport in Semiconductors by : Paul Douglas Yoder

Download or read book First Principles Monte Carlo Simulation of Charge Transport in Semiconductors written by Paul Douglas Yoder and published by . This book was released on 1994 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new multiscale method is presented for modeling charge transport across a semi-conductor heterointerface. It has the advantage of increase predictive power due to its treatment of the detailed mixing between Bloch and Tamm electronic states in the interface region; this is of critical importance when a transmission or reflection is accompanied by large changes in perpendicular wavevector, and in the presence of multiple transmission and reflection channels. The electron-phonon interaction is then examined in bulk silicon within the local density functional formalism. Intravalley and intervalley deformation potentials are calculated for a variety of transitions, and the model is compared with available data from both experimental and alternative calculation methods. The formalism developed in this thesis for the calculation of electron-phonon interaction strength is then applied to the calculation of matrix elements for an exhaustive set of transitions throughout the entire Brillouin zone and over a wide range of energies, taking into account the details of each phonon mode. These matrix elements are then incorporated into a unique Monte Carlo charge transport simulator with which transport statistics are calculated. Finally, a new method is presented for the calculation of spectral functions in crystalline solids.

Theory of Transport Properties of Semiconductor Nanostructures

Download Theory of Transport Properties of Semiconductor Nanostructures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461558077
Total Pages : 394 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Theory of Transport Properties of Semiconductor Nanostructures by : Eckehard Schöll

Download or read book Theory of Transport Properties of Semiconductor Nanostructures written by Eckehard Schöll and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Monte Carlo Simulation of Semiconductor Devices

Download Monte Carlo Simulation of Semiconductor Devices PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401581339
Total Pages : 343 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Simulation of Semiconductor Devices by : C. Moglestue

Download or read book Monte Carlo Simulation of Semiconductor Devices written by C. Moglestue and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.

The Monte Carlo Method for Semiconductor Device Simulation

Download The Monte Carlo Method for Semiconductor Device Simulation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3709169631
Total Pages : 370 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Monte Carlo Method for Semiconductor Device Simulation by : Carlo Jacoboni

Download or read book The Monte Carlo Method for Semiconductor Device Simulation written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.

Hot Electrons in Semiconductors

Download Hot Electrons in Semiconductors PDF Online Free

Author :
Publisher :
ISBN 13 : 9780198500582
Total Pages : 536 pages
Book Rating : 4.5/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Hot Electrons in Semiconductors by : N. Balkan

Download or read book Hot Electrons in Semiconductors written by N. Balkan and published by . This book was released on 1998 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.

Charge Transport in Low Dimensional Semiconductor Structures

Download Charge Transport in Low Dimensional Semiconductor Structures PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303035993X
Total Pages : 344 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Charge Transport in Low Dimensional Semiconductor Structures by : Vito Dario Camiola

Download or read book Charge Transport in Low Dimensional Semiconductor Structures written by Vito Dario Camiola and published by Springer Nature. This book was released on 2020-03-02 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.

Monte Carlo Simulations of Charge Transport in Organic Semiconductors

Download Monte Carlo Simulations of Charge Transport in Organic Semiconductors PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 50 pages
Book Rating : 4.:/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Simulations of Charge Transport in Organic Semiconductors by : Pyie Phyo Aung

Download or read book Monte Carlo Simulations of Charge Transport in Organic Semiconductors written by Pyie Phyo Aung and published by . This book was released on 2014 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film organic semiconductors have applications in electronic devices such as transistors, light emitting diodes, and organic solar cells. The performance of such devices depends on the mobility of the charge carriers which is strongly affected by the morphology of the material. In this work, we perform Monte Carlo simulations to study charge transport in lattice models of homogeneous and heterogeneous materials. The model device consists of a layer of the material between two electrodes at different potentials. Charge carriers are injected from the electrodes and move by hopping under the influence of the electric field and Coulomb interactions. To model the effect of polymer chain connectivity on charge transport we include an energetic barrier to hopping between sites on different chains. We measure current-voltage (I-V) characteristics of model devices and determine the mobility of the charge carriers from the slope of the I-V curves in the ohmic regime. We validate our algorithms with simulations of simple devices consisting of two parallel layers of donor and acceptor materials between the electrodes. To study the effect of ordered domains in polymeric semiconductors we simulate charge transport in a recently developed lattice model for polymers that undergo an order-disorder transition. We find that ordering in the material leads to strong anisotropies with increased mobility for transport parallel to the ordered domains and reduced mobility for perpendicular transport.

Simulation of Semiconductor Devices and Processes

Download Simulation of Semiconductor Devices and Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3709166195
Total Pages : 515 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Simulation of Semiconductor Devices and Processes by : Heiner Ryssel

Download or read book Simulation of Semiconductor Devices and Processes written by Heiner Ryssel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: SISDEP ’95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.

Charge Dynamics in Organic Semiconductors

Download Charge Dynamics in Organic Semiconductors PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110473631
Total Pages : 202 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Charge Dynamics in Organic Semiconductors by : Pascal Kordt

Download or read book Charge Dynamics in Organic Semiconductors written by Pascal Kordt and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-12 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link

Topics in High Field Transport in Semiconductors

Download Topics in High Field Transport in Semiconductors PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810246714
Total Pages : 270 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Topics in High Field Transport in Semiconductors by : Kevin F. Brennan

Download or read book Topics in High Field Transport in Semiconductors written by Kevin F. Brennan and published by World Scientific. This book was released on 2001 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines some of the charge carrier transport issues encountered in the field of modern semiconductor devices and novel materials. Theoretical approaches to the understanding and modeling of the relevant physical phenomena, seen in devices that have very small spatial dimensions and that operate under high electric field strength, are described in papers written by leading experts and pioneers in this field. In addition, the book examines the transport physics encountered in novel materials such as wide band gap semiconductors (GaN, SiC, etc.) as well as organic semiconductors. Topics in High Field Transport in Semiconductors provides a comprehensive overview that will be beneficial to newcomers as well as engineers and researchers engaged in this exciting field.

From Kinetic Theory to Turbulence Modeling

Download From Kinetic Theory to Turbulence Modeling PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811964629
Total Pages : 286 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis From Kinetic Theory to Turbulence Modeling by : Paolo Barbante

Download or read book From Kinetic Theory to Turbulence Modeling written by Paolo Barbante and published by Springer Nature. This book was released on 2023-04-29 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects relevant contributions presented at a conference, organized in honour of Carlo Cercignani, that took place at Politecnico di Milano on May 24–28, 2021. Different research areas characterizing the scientific work of Carlo Cercignani have been considered with a particular focus on: mathematical and numerical methods for kinetic equations; kinetic modelling of gas mixtures and polyatomic gases; applications of the Boltzmann equation to electron transport, social phenomena and epidemic spread; turbulence modelling; the Einstein Classical Program; Dynamical Systems Theory.

Nuclear Electronics with Quantum Cryogenic Detectors

Download Nuclear Electronics with Quantum Cryogenic Detectors PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119834716
Total Pages : 452 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Nuclear Electronics with Quantum Cryogenic Detectors by : Vladimir Polushkin

Download or read book Nuclear Electronics with Quantum Cryogenic Detectors written by Vladimir Polushkin and published by John Wiley & Sons. This book was released on 2022-08-02 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: NUCLEAR ELECTRONICS WITH QUANTUM CRYOGENIC DETECTORS An ideal, comprehensive reference on quantum cryogenic detector instrumentation for the semiconductor and nuclear electronics industries Quantum nuclear electronics is an important scientific and technological field that overviews the development of the most advanced analytical instrumentation. This instrumentation covers a broad range of applications such as astrophysics, fundamental nuclear research facilities, chemical nano-spectroscopy laboratories, remote sensing, security systems, forensic investigations, and more. In the years since the first edition of this popular resource, the discipline has developed from demonstrating the unprecedented energy resolving power of individual devices to building large frame cameras with hundreds of thousands of pixel arrays capable of measuring and processing massive information flow. Building upon its first edition, the second edition of Nuclear Electronics with Quantum Cryogenic Detectors reflects the latest advances by focusing on novel microwave kinetic inductance detection devices (MKIDs), the microwave superconducting quantum interferometers (MSQUIDs) extending by orders of magnitude the scalability of cryogenic detectors implementing newly developed multiplexing techniques and decoding algorithms. More, it reflects on the interaction of quantum cryogenic detectors—which in turn can be paired with semiconductor large frame cameras to provide a broad picture of a sky or chemical sample—and quantum devices, making this second edition of Nuclear Electronics a one-stop reference for the combined technologies. The book also provides an overview of latest developments in front-end electronics, signal processing channels, and cryogenics—all components of quantum spectroscopic systems—and provides guidance on the design and applications of the future quantum cryogenic ultra-high-resolution spectrometers. Nuclear Electronics with Quantum Cryogenic Detectors readers will also find: Fully revised material from the first edition relating to cryogenic requirements Brand new chapters on semiconductor radiation sensors, cooling and magnetic shielding for cryogenic detector systems; front-end readout electronic circuits for quantum cryogenic detectors; energy resolution of quantum cryogenic spectrometers; and applications of spectrometers based on cryogenic detectors A number of brand-new chapters dedicated to applications using MSQUID multiplexing technique, an area that will dominate the cryogenic detector field in the next decades Nuclear Electronics with Quantum Cryogenic Detectors provides a comprehensive overview of the entire discipline for researchers, industrial engineers, and graduate students involved in the development of high-precision nuclear measurements, nuclear analytical instrumentation, and advanced superconductor primary sensors. It is also a helpful resource for electrical and electronic engineers and physicists in the nuclear industry, as well as specialist researchers or professionals working in cryogenics applications like biomagnetism, quantum computing, gravitation measurement, and more.

Monte Carlo Device Simulation

Download Monte Carlo Device Simulation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461540267
Total Pages : 317 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Device Simulation by : Karl Hess

Download or read book Monte Carlo Device Simulation written by Karl Hess and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo simulation is now a well established method for studying semiconductor devices and is particularly well suited to highlighting physical mechanisms and exploring material properties. Not surprisingly, the more completely the material properties are built into the simulation, up to and including the use of a full band structure, the more powerful is the method. Indeed, it is now becoming increasingly clear that phenomena such as reliabil ity related hot-electron effects in MOSFETs cannot be understood satisfac torily without using full band Monte Carlo. The IBM simulator DAMOCLES, therefore, represents a landmark of great significance. DAMOCLES sums up the total of Monte Carlo device modeling experience of the past, and reaches with its capabilities and opportunities into the distant future. This book, therefore, begins with a description of the IBM simulator. The second chapter gives an advanced introduction to the physical basis for Monte Carlo simulations and an outlook on why complex effects such as collisional broadening and intracollisional field effects can be important and how they can be included in the simulations. References to more basic intro the book. The third chapter ductory material can be found throughout describes a typical relationship of Monte Carlo simulations to experimental data and indicates a major difficulty, the vast number of deformation poten tials required to simulate transport throughout the entire Brillouin zone. The fourth chapter addresses possible further extensions of the Monte Carlo approach and subtleties of the electron-electron interaction.

Transport of Information-Carriers in Semiconductors and Nanodevices

Download Transport of Information-Carriers in Semiconductors and Nanodevices PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522523138
Total Pages : 690 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Transport of Information-Carriers in Semiconductors and Nanodevices by : El-Saba, Muhammad

Download or read book Transport of Information-Carriers in Semiconductors and Nanodevices written by El-Saba, Muhammad and published by IGI Global. This book was released on 2017-03-31 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.

Monte Carlo Principles and Neutron Transport Problems

Download Monte Carlo Principles and Neutron Transport Problems PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486462935
Total Pages : 258 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Principles and Neutron Transport Problems by : Jerome Spanier

Download or read book Monte Carlo Principles and Neutron Transport Problems written by Jerome Spanier and published by Courier Corporation. This book was released on 2008-01-01 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part treatment introduces the general principles of the Monte Carlo method within a unified mathematical point of view, applying them to problems in neutron transport. It describes several efficiency-enhancing approaches, including the method of superposition and simulation of the adjoint equation based on reciprocity. The first half of the book presents an exposition of the fundamentals of Monte Carlo methods, examining discrete and continuous random walk processes and standard variance reduction techniques. The second half of the text focuses directly on the methods of superposition and reciprocity, illustrating their applications to specific neutron transport problems. Topics include the computation of thermal neutron fluxes and the superposition principle in resonance escape computations.

Handbook of Optoelectronic Device Modeling and Simulation

Download Handbook of Optoelectronic Device Modeling and Simulation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149874947X
Total Pages : 835 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Optoelectronic Device Modeling and Simulation by : Joachim Piprek

Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-10 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.

The Physics of Submicron Semiconductor Devices

Download The Physics of Submicron Semiconductor Devices PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489923829
Total Pages : 729 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis The Physics of Submicron Semiconductor Devices by : Harold L. Grubin

Download or read book The Physics of Submicron Semiconductor Devices written by Harold L. Grubin and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.