Finite Element Methods and Iterative Refinement Techniques for Partial Differential Equations Involving Interfaces

Download Finite Element Methods and Iterative Refinement Techniques for Partial Differential Equations Involving Interfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 8 pages
Book Rating : 4.:/5 (224 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods and Iterative Refinement Techniques for Partial Differential Equations Involving Interfaces by : Zhilin Li

Download or read book Finite Element Methods and Iterative Refinement Techniques for Partial Differential Equations Involving Interfaces written by Zhilin Li and published by . This book was released on 2003 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Finite Element Methods and Their Applications

Download Finite Element Methods and Their Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540240780
Total Pages : 415 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods and Their Applications by : Zhangxin Chen

Download or read book Finite Element Methods and Their Applications written by Zhangxin Chen and published by Springer Science & Business Media. This book was released on 2005-06-23 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

A Local Refinement Finite Element Method for Time Dependent Partial Differential Equations

Download A Local Refinement Finite Element Method for Time Dependent Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 12 pages
Book Rating : 4.:/5 (227 download)

DOWNLOAD NOW!


Book Synopsis A Local Refinement Finite Element Method for Time Dependent Partial Differential Equations by : J. E. Flaherty

Download or read book A Local Refinement Finite Element Method for Time Dependent Partial Differential Equations written by J. E. Flaherty and published by . This book was released on 1984 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors discuss an adaptive local refinement finite element method for solving initial-boundary value problems for vector systems of partial differential equations in one space dimension and time. The method ues piecewise bilinear rectangular space-time finite elements. For each time step, grids are automatically added to regions where the local discretization error is estimated as being larger than a prescribed tolerance. The authors discuss several aspects oof their algorithm, including the tree structure that is used to represent the finite element solution and grids, an error estimation technique, and initial boundary conditions at coarse-fine mesh interfaces. The authors also present computational results for a simple linear hyperbolic problem, a problem involving Burger's equation, and a model combustion problem. Originator-supplied keywords include: Adaptive methods, Finite element methods, Local refinement, and Time dependent problems.

Mathematical Aspects of Finite Elements in Partial Differential Equations

Download Mathematical Aspects of Finite Elements in Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483268071
Total Pages : 431 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Aspects of Finite Elements in Partial Differential Equations by : Carl de Boor

Download or read book Mathematical Aspects of Finite Elements in Partial Differential Equations written by Carl de Boor and published by Academic Press. This book was released on 2014-05-10 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Finite Elements in Partial Differential Equations addresses the mathematical questions raised by the use of finite elements in the numerical solution of partial differential equations. This book covers a variety of topics, including finite element method, hyperbolic partial differential equation, and problems with interfaces. Organized into 13 chapters, this book begins with an overview of the class of finite element subspaces with numerical examples. This text then presents as models the Dirichlet problem for the potential and bipotential operator and discusses the question of non-conforming elements using the classical Ritz- and least-squares-method. Other chapters consider some error estimates for the Galerkin problem by such energy considerations. This book discusses as well the spatial discretization of problem and presents the Galerkin method for ordinary differential equations using polynomials of degree k. The final chapter deals with the continuous-time Galerkin method for the heat equation. This book is a valuable resource for mathematicians.

The Finite Element Method: Theory, Implementation, and Applications

Download The Finite Element Method: Theory, Implementation, and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642332870
Total Pages : 403 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson

Download or read book The Finite Element Method: Theory, Implementation, and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

Download The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483267989
Total Pages : 814 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations by : A. K. Aziz

Download or read book The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations written by A. K. Aziz and published by Academic Press. This book was released on 2014-05-10 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

Analysis of a Finite Element Method

Download Analysis of a Finite Element Method PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468463314
Total Pages : 163 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Analysis of a Finite Element Method by : Granville Sewell

Download or read book Analysis of a Finite Element Method written by Granville Sewell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text can be used for two quite different purposes. It can be used as a reference book for the PDElPROTRAN user· who wishes to know more about the methods employed by PDE/PROTRAN Edition 1 (or its predecessor, TWODEPEP) in solving two-dimensional partial differential equations. However, because PDE/PROTRAN solves such a wide class of problems, an outline of the algorithms contained in PDElPROTRAN is also quite suitable as a text for an introductory graduate level finite element course. Algorithms which solve elliptic, parabolic, hyperbolic, and eigenvalue partial differential equation problems are pre sented, as are techniques appropriate for treatment of singularities, curved boundaries, nonsymmetric and nonlinear problems, and systems of PDEs. Direct and iterative linear equation solvers are studied. Although the text emphasizes those algorithms which are actually implemented in PDEI PROTRAN, and does not discuss in detail one- and three-dimensional problems, or collocation and least squares finite element methods, for example, many of the most commonly used techniques are studied in detail. Algorithms applicable to general problems are naturally emphasized, and not special purpose algorithms which may be more efficient for specialized problems, such as Laplace's equation. It can be argued, however, that the student will better understand the finite element method after seeing the details of one successful implementation than after seeing a broad overview of the many types of elements, linear equation solvers, and other options in existence.

Adaptive Finite Element Methods for Differential Equations

Download Adaptive Finite Element Methods for Differential Equations PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 303487605X
Total Pages : 216 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Finite Element Methods for Differential Equations by : Wolfgang Bangerth

Download or read book Adaptive Finite Element Methods for Differential Equations written by Wolfgang Bangerth and published by Birkhäuser. This book was released on 2013-11-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.

Geometrically Unfitted Finite Element Methods and Applications

Download Geometrically Unfitted Finite Element Methods and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319714317
Total Pages : 371 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Geometrically Unfitted Finite Element Methods and Applications by : Stéphane P. A. Bordas

Download or read book Geometrically Unfitted Finite Element Methods and Applications written by Stéphane P. A. Bordas and published by Springer. This book was released on 2018-03-13 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.

Finite Element Methods

Download Finite Element Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319499718
Total Pages : 236 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods by : Jonathan Whiteley

Download or read book Finite Element Methods written by Jonathan Whiteley and published by Springer. This book was released on 2017-01-26 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

Finite Elements and Fast Iterative Solvers

Download Finite Elements and Fast Iterative Solvers PDF Online Free

Author :
Publisher :
ISBN 13 : 0199678804
Total Pages : 495 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Finite Elements and Fast Iterative Solvers by : Howard C. Elman

Download or read book Finite Elements and Fast Iterative Solvers written by Howard C. Elman and published by . This book was released on 2014 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory" provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

An Introduction to the Finite Element Method for Differential Equations

Download An Introduction to the Finite Element Method for Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119671663
Total Pages : 352 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Finite Element Method for Differential Equations by : Mohammad Asadzadeh

Download or read book An Introduction to the Finite Element Method for Differential Equations written by Mohammad Asadzadeh and published by John Wiley & Sons. This book was released on 2020-08-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.

Automated Solution of Differential Equations by the Finite Element Method

Download Automated Solution of Differential Equations by the Finite Element Method PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642230997
Total Pages : 723 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

The mathematics of finite elements and Applications V

Download The mathematics of finite elements and Applications V PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323143717
Total Pages : 669 pages
Book Rating : 4.3/5 (231 download)

DOWNLOAD NOW!


Book Synopsis The mathematics of finite elements and Applications V by : J Whiteman

Download or read book The mathematics of finite elements and Applications V written by J Whiteman and published by Elsevier. This book was released on 2012-12-02 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Finite Elements and Applications V is the summary of invited papers and the abstracts of the poster papers in the fifth conference on The Mathematics of Finite Elements and Applications, MAFELAP 1984, held at Brunei University in May 1984. Said symposium discussedfield of finite elements, including its techniques, theory, application, and implementation . The coverage of the book includes a wide range of mathematical topics under finite elements, including its method, calculations, analysis, and applications. The book also encompasses topics of computer-generated geometric design interface; modeling in an integrated computer design; and determination of dimensional field lines. Acidized channels in chalk formations, elastodynamics, stress analysis, and infinite elements are also discussed. The book also looks at isoparametric and hierarchical element procedures and Petrov-Galerkin methods. The text is recommended for mathematicians, engineers, and those in the field of information technology who would like to know more about finite elements and its applications in their respective fields.

Understanding and Implementing the Finite Element Method

Download Understanding and Implementing the Finite Element Method PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717846
Total Pages : 364 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Understanding and Implementing the Finite Element Method by : Mark S. Gockenbach

Download or read book Understanding and Implementing the Finite Element Method written by Mark S. Gockenbach and published by SIAM. This book was released on 2006-01-01 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and Implementing the Finite Element Method Mark S. Gockenbach "Upon completion of this book a student or researcher would be well prepared to employ finite elements for an application problem or proceed to the cutting edge of research in finite element methods. The accuracy and the thoroughness of the book are excellent." --Anthony Kearsley, research mathematician, National Institute of Standards and Technology The infinite element method is the most powerful general-purpose technique for computing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the theory and the implementation of the finite element method for equilibrium problems. This book contains a thorough derivation of the finite element equations as well as sections on programming the necessary calculations, solving the finite element equations, and using a posteriori error estimates to produce validated solutions. Accessible introductions to advanced topics, such as multigrid solvers, the hierarchical basis conjugate gradient method, and adaptive mesh generation, are provided. Each chapter ends with exercises to help readers master these topics.

Finite Elements and Fast Iterative Solvers

Download Finite Elements and Fast Iterative Solvers PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191667927
Total Pages : 495 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Finite Elements and Fast Iterative Solvers by : Howard Elman

Download or read book Finite Elements and Fast Iterative Solvers written by Howard Elman and published by OUP Oxford. This book was released on 2014-06-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

The Least-Squares Finite Element Method

Download The Least-Squares Finite Element Method PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662037408
Total Pages : 425 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis The Least-Squares Finite Element Method by : Bo-nan Jiang

Download or read book The Least-Squares Finite Element Method written by Bo-nan Jiang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.