Experimental Investigation of Turbine Blade Platform Film Cooling and Rotational Effect on Trailing Edge Internal Cooling

Download Experimental Investigation of Turbine Blade Platform Film Cooling and Rotational Effect on Trailing Edge Internal Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Turbine Blade Platform Film Cooling and Rotational Effect on Trailing Edge Internal Cooling by : Lesley Mae Wright

Download or read book Experimental Investigation of Turbine Blade Platform Film Cooling and Rotational Effect on Trailing Edge Internal Cooling written by Lesley Mae Wright and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The present work has been an experimental investigation to evaluate the applicability of gas turbine cooling technology. With the temperature of the mainstream gas entering the turbine elevated above the melting temperature of the metal components, these components must be cooled, so they can withstand prolonged exposure to the mainstream gas. Both external and internal cooling techniques have been studied as a means to increase the life of turbine components. Detailed film cooling effectiveness distributions have been obtained on the turbine blade platform with a variety of cooling configurations. Because the newly developed pressure sensitive paint (PSP) technique has proven to be the most suitable technique for measuring the film effectiveness, it was applied to a variety of platform seal configurations and discrete film flows. From the measurements it was shown advanced seals provide more uniform protection through the passage with less potential for ingestion of the hot mainstream gases into the engine cavity. In addition to protecting the outer surface of the turbine components, via film cooling, heat can also be removed from the components internally. Because the turbine blades are rotating within the engine, it is important to consider the effect of rotation on the heat transfer enhancement within the airfoil cooling channels. Through this experimental investigation, the heat transfer enhancement has been measured in narrow, rectangular channels with various turbulators. The present experimental investigation has shown the turbulators, coupled with the rotation induced Coriolis and buoyancy forces, result in non-uniform levels of heat transfer enhancement in the cooling channels. Advanced turbulator configurations can be used to provide increased heat transfer enhancement. Although these designs result in increased frictional losses, the benefit of the heat transfer enhancement outweighs the frictional losses.

Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine

Download Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 56 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine by : Vernon L. Arne

Download or read book Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine written by Vernon L. Arne and published by . This book was released on 1951 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades

Download Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades by : Zhihong Gao

Download or read book Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades written by Zhihong Gao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The hot gas temperature in gas turbine engines is far above the permissible metal temperatures. Advanced cooling technologies must be applied to cool the blades, so they can withstand the extreme conditions. Film cooling is widely used in modern high temperature and high pressure blades as an active cooling scheme. In this study, the film cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of four parts: 1) effect of upstream wake on blade surface film cooling, 2) effect of upstream vortex on platform purge flow cooling, 3) influence of hole shape and angle on leading edge film cooling and 4) slot film cooling on trailing edge. Pressure sensitive paint (PSP) technique was used to get the conduction-free film cooling effectiveness distribution. For the blade surface film cooling, the effectiveness from axial shaped holes and compound angle shaped holes were examined. Results showed that the compound angle shaped holes offer better film effectiveness than the axial shaped holes. The upstream stationary wakes have detrimental effect on film effectiveness in certain wake rod phase positions. For platform purge flow cooling, the stator-rotor gap was simulated by a typical labyrinth-like seal. Delta wings were used to generate vortex and modeled the passage vortex generated by the upstream vanes. Results showed that the upstream vortex reduces the film cooling effectiveness on the platform. For the leading edge film cooling, two film cooling designs, each with four film cooling hole configurations, were investigated. Results showed that the shaped holes provide higher film cooling effectiveness than the cylindrical holes at higher average blowing ratios. In the same range of average blowing ratio, the radial angle holes produce better effectiveness than the compound angle holes. The seven-row design results in much higher effectiveness than the three-row design. For the trailing edge slot cooling, the effect of slot lip thickness on film effectiveness under the two mainstream conditions was investigated. Results showed thinner lips offer higher effectiveness. The film effectiveness on the slots reduces when the incoming mainstream boundary layer thickness decreases.

Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades

Download Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 44 pages
Book Rating : 4.3/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades by : Ernst Rudolf Georg Eckert

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine

Download Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 78 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine by : Herman H. Ellerbrock (Jr.)

Download or read book Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine written by Herman H. Ellerbrock (Jr.) and published by . This book was released on 1951 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling

Download An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (585 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling by : Jungho Choi

Download or read book An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling written by Jungho Choi and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This experimental study contains two points; part 1 - turbine blade heat transfer under low Reynolds number flow conditions, and part 2 - trailing edge cooling and heat transfer. The effect of unsteady wake and free stream turbulence on heat transfer and pressure coefficients of a turbine blade was investigated in low Reynolds number flows. The experiments were performed on a five blade linear cascade in a low speed wind tunnel. A spoked wheel type wake generator and two different turbulence grids were employed to generate different levels of the Strouhal number and turbulence intensity, respectively. The cascade inlet Reynolds number based on blade chord length was varied from 15,700 to 105,000, and the Strouhal number was varied from 0 to 2.96 by changing the rotating wake passing frequency (rod speed) and cascade inlet velocity. A thin foil thermocouple instrumented blade was used to determine the surface heat transfer coefficient. A Liquid crystal technique based on hue value detection was used to measure the heat transfer coefficient on a trailing edge film cooling model and internal model of a gas turbine blade. It was also used to determine the film effectiveness on the trailing edge. For the internal model, Reynolds numbers based on the hydraulic diameter of the exit slot and exit velocity were 5,000, 10,000, 20,000, and 30,000 and corresponding coolant-to-mainstream velocity ratios were 0.3, 0.6, 1.2, and 1.8 for the external models, respectively. The experiments were performed at two different designs and each design has several different models such as staggered / inline exit, straight / tapered entrance, and smooth / rib entrance. The compressed air was used in coolant air. A circular turbulence grid was employed to upstream in the wind tunnel and square ribs were employed in the inlet chamber to generate turbulence intensity externally and internally, respectively.

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 14 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling by : James D. Heidmann

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1997 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade

Download Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 32 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade by : Eugene F. Schum

Download or read book Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade written by Eugene F. Schum and published by . This book was released on 1954 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer

Download Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 26 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer by : Vijay K. Garg

Download or read book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer written by Vijay K. Garg and published by . This book was released on 1995 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades

Download Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 158 pages
Book Rating : 4.:/5 (867 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades by : Shiou-Jiuan Li

Download or read book Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades written by Shiou-Jiuan Li and published by . This book was released on 2013 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: High turbine inlet temperature becomes necessary for increasing thermal efficiency of modern gas turbines. To prevent failure of turbine components, advance cooling technologies have been applied to different portions of turbine blades. The detailed film cooling effectiveness distributions along a rotor blade has been studied under combined effects of upstream trailing edge unsteady wake with coolant ejection by the pressure sensitive paint (PSP). The experiment is conducted in a low speed wind tunnel with a five blade linear cascade and exit Reynolds number is 370,000. The density ratios for both blade and trailing edge coolant ejection range from 1.5 to 2.0. Blade blowing ratios are 0.5 and 1.0 on suction surface and 1.0 and 2.0 on pressure surface. Trailing edge jet blowing ratio and Strouhal number are 1.0 and 0.12, respectively. Results show the unsteady wake reduces overall effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances overall effectiveness. Results also show that the overall effectiveness increases by using heavier coolant for ejection and blade film cooling. Leading edge film cooling has been investigated using PSP. There are two test models: seven and three-row of film holes for simulating vane and blade, respectively. Four film holes' configurations are used for both models: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Density ratios are 1.0 to 2.0 while blowing ratios are 0.5 to 1.5. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900. The turbulence intensity near test model is about 7%. The results show the shaped holes have overall higher effectiveness than cylindrical holes for both designs. As increasing density ratio, density effect on shaped holes becomes evident. Radial angle holes perform better than compound angle holes as increasing blowing and density ratios. Increasing density ratio generally increases overall effectiveness for all configurations and blowing ratios. One exception occurs for compound angle and radial angle shaped hole of three-row design at lower blowing ratio. Effectiveness along stagnation row reduces as increasing density ratio due to coolant jet with insufficient momentum caused by heavier density coolant, shaped hole, and stagnation row. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148288

Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade

Download Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 38 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade by : Louis J. Schafer (Jr.)

Download or read book Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade written by Louis J. Schafer (Jr.) and published by . This book was released on 1952 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Parametric Study of Turbine Blade Internal Cooling and Film Cooling

Download Parametric Study of Turbine Blade Internal Cooling and Film Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (689 download)

DOWNLOAD NOW!


Book Synopsis Parametric Study of Turbine Blade Internal Cooling and Film Cooling by : Akhilesh P. Rallabandi

Download or read book Parametric Study of Turbine Blade Internal Cooling and Film Cooling written by Akhilesh P. Rallabandi and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbine engines are extensively used in the aviation and power generation industries. They are used as topping cycles in combined cycle power plants, or as stand alone power generation units. Gains in thermodynamic efficiency can be realized by increasing the turbine inlet temperatures. Since modern turbine inlet temperatures exceed the melting point of the constituent superalloys, it is necessary to provide an aggressive cooling system. Relatively cool air, ducted from the compressor of the engine is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines use high Reynolds number internal flow to cool their internal passages. The first part of this study focuses on experiments pertaining to passages with Reynolds numbers of up to 400,000. Common turbulator designs (45degree parallel sharp-edged and round-edged) ribs are studied. Older correlations are found to require corrections in order to be valid in the high Reynolds number parameter space. The effect of rotation on heat transfer in a typical three-pass serpentine channel is studied using a computational model with near-wall refinement. Results from this computational study indicate that the hub experiences abnormally high heat transfer under rotation. An experimental study is conducted at Buoyancy numbers similar to an actual engine on a wedge shaped model trailing edge, roughened with pin-fins and equipped with slot ejection. Results show an asymmetery between the leading and trailing surfaces due to rotation - a difference which is subdued due to the provision of pin-fins. Film cooling effectiveness is measured by the PSP mass transfer analogy technique in two different configurations: a flat plate and a typical high pressure turbine blade. Parameters studied include a step immediately upstream of a row of holes; the Strouhal number (quantifying rotor-stator interaction) and coolant to mainstream density ratio. Results show a deterioration in film cooling effectiveness with on increasing the Strouhal number. Using a coolant with a higher density results in higher film cooling effectiveness.

Investigations of Flow and Film Cooling on Turbine Blade Edge Regions

Download Investigations of Flow and Film Cooling on Turbine Blade Edge Regions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Investigations of Flow and Film Cooling on Turbine Blade Edge Regions by : Huitao Yang

Download or read book Investigations of Flow and Film Cooling on Turbine Blade Edge Regions written by Huitao Yang and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The inlet temperature of modern gas turbine engines has been increased to achieve higher thermal efficiency and increased output. The blade edge regions, including the blade tip, the leading edge, and the platform, are exposed to the most extreme heat loads, and therefore, must be adequately cooled to maintain safety. For the blade tip, there is tip leakage flow due to the pressure gradient across the tip. This leakage flow not only reduces the blade aerodynamic performance, but also yields a high heat load due to the thin boundary layer and high speed. Various tip configurations, such as plane tip, double side squealer tip, and single suction side squealer tip, have been studied to find which one is the best configuration to reduce the tip leakage flow and the heat load. In addition to the flow and heat transfer on the blade tip, film cooling with various arrangements, including camber line, upstream, and two row configurations, have been studied. Besides these cases of low inlet/outlet pressure ratio, low temperature, non-rotating, the high inlet/outlet pressure ratio, high temperature, and rotating cases have been investigated, since they are closer to real turbine working conditions. The leading edge of the rotor blade experiences high heat transfer because of the stagnation flow. Film cooling on the rotor leading edge in a 11/2 turbine stage has been numerically studied for the designand off-design conditions. Simulations find that the increasing rotating speed shifts the stagnation line from the pressure side, to the leading edge and the suction side, while film cooling protection moves in the reverse direction with decreasing cooling effectiveness. Film cooling brings a high unsteady intensity of the heat transfer coefficient, especially on the suction side. The unsteady intensity of film cooling effectiveness is higher than that of the heat transfer coefficient. The film cooling on the rotor platform has gained significant attention due to the usage of low-aspect ratio and low-solidity turbine designs. Film cooling and its heat transfer are strongly influenced by the secondary flow of the end-wall and the stator-rotor interaction. Numerical predictions have been performed for the film cooling on the rotating platform of a whole turbine stage. The design conditions yield a high cooling effectiveness and decrease the cooling effectiveness unsteady intensity, while the high rpm condition dramatically reduces the film cooling effectiveness. High purge flow rates provide a better cooling protection. In addition, the impact of the turbine work process on film cooling effectiveness and heat transfer coefficient has been investigated. The overall cooling effectiveness shows a higher value than the adiabatic effectiveness does.

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781725097346
Total Pages : 28 pages
Book Rating : 4.0/5 (973 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling by : National Aeronautics and Space Administration (NASA)

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-16 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effect of wake passing on the showerhead film cooling performance of a turbine blade has been investigated experimentally. The experiments were performed in an annular turbine cascade with an upstream rotating row of cylindrical rods. Nickel thin-film gauges were used to determine local film effectiveness and Nusselt number values for various injectants, blowing ratios, and Strouhal numbers. Results indicated a reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated by a streamwise-constant decrement of 0.094.St. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict experimental film effectiveness values. This is likely due to the inability to match actual hole exit velocity profiles and the absence of a credible turbulence model for film cooling. Heidmann, James D. and Lucci, Barbara L. and Reshotko, Eli Glenn Research Center NASA-TM-107425, NAS 1.15:107425, E-10671 RTOP 505-62-10...

Experimental Study of Gas Turbine Blade Film Cooling and Internal Turbulated Heat Transfer at Large Reynolds Numbers

Download Experimental Study of Gas Turbine Blade Film Cooling and Internal Turbulated Heat Transfer at Large Reynolds Numbers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Experimental Study of Gas Turbine Blade Film Cooling and Internal Turbulated Heat Transfer at Large Reynolds Numbers by : Shantanu Mhetras

Download or read book Experimental Study of Gas Turbine Blade Film Cooling and Internal Turbulated Heat Transfer at Large Reynolds Numbers written by Shantanu Mhetras and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Film cooling effectiveness on a gas turbine blade tip on the near tip pressure side and on the squealer cavity floor is investigated. Optimal arrangement of film cooling holes, effect of a full squealer and a cutback squealer, varying blowing ratios and squealer cavity depth are also examined on film cooling effectiveness. The film-cooling effectiveness distributions are measured on the blade tip, near tip pressure side and the inner pressure and suction side rim walls using a Pressure Sensitive Paint (PSP) technique. A blowing ratio of 1.0 is found to give best results on the pressure side whereas the other tip surfaces give best results for blowing ratios of 2. Film cooling effectiveness tests are also performed on the span of a fully-cooled high pressure turbine blade in a 5 bladed linear cascade using the PSP technique. Film cooling effectiveness over the entire blade region is determined from full coverage film cooling, showerhead cooling and from each individual row with and without an upstream wake. The effect of superposition of film cooling effectiveness from each individual row is then compared with full coverage film cooling. Results show that an upstream wake can result in lower film cooling effectiveness on the blade. Effectiveness magnitudes from superposition of effectiveness data from individual rows are comparable with that from full coverage film cooling. Internal heat transfer measurements are also performed in a high aspect ratio channel and from jet array impingement on a turbulated target wall at large Reynolds numbers. For the channel, three dimple and one discrete rib configurations are tested on one of the wide walls for Reynolds numbers up to 1.3 million. The presence of a turbulated wall and its effect on heat transfer enhancement against a smooth surface is investigated. Heat transfer enhancement is found to decrease at high Re with the discrete rib configurations providing the best enhancement but highest pressure losses. Experiments to investigate heat transfer and pressure loss from jet array impingement are also performed on the target wall at Reynolds numbers up to 450,000. The heat transfer from a turbulated target wall and two jet plates is investigated. A target wall with short pins provides the best heat transfer with the dimpled target wall giving the lowest heat transfer among the three geometries studied.

Film Cooled Small Turbine Blade Research

Download Film Cooled Small Turbine Blade Research PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 78 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Film Cooled Small Turbine Blade Research by : Bryan E. Richards

Download or read book Film Cooled Small Turbine Blade Research written by Bryan E. Richards and published by . This book was released on 1976 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Investigations of Platform Film-Cooling in Highly-Loaded Turbine Vanes

Download Experimental Investigations of Platform Film-Cooling in Highly-Loaded Turbine Vanes PDF Online Free

Author :
Publisher :
ISBN 13 : 9783944331362
Total Pages : 232 pages
Book Rating : 4.3/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigations of Platform Film-Cooling in Highly-Loaded Turbine Vanes by : Martin Kunze

Download or read book Experimental Investigations of Platform Film-Cooling in Highly-Loaded Turbine Vanes written by Martin Kunze and published by . This book was released on 2013-12-11 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: