The Fractional Laplacian

Download The Fractional Laplacian PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813224010
Total Pages : 342 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis The Fractional Laplacian by : Wenxiong Chen

Download or read book The Fractional Laplacian written by Wenxiong Chen and published by World Scientific. This book was released on 2020-06-09 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence.

Harnack Inequalities and Nonlinear Operators

Download Harnack Inequalities and Nonlinear Operators PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030737780
Total Pages : 202 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Harnack Inequalities and Nonlinear Operators by : Vincenzo Vespri

Download or read book Harnack Inequalities and Nonlinear Operators written by Vincenzo Vespri and published by Springer Nature. This book was released on 2021-05-29 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains two contributions about the work of Emmanuele DiBenedetto and a selection of original papers. The authors are some of the main experts in Harnack’s inequalities and nonlinear operators. These papers are part of the contributions presented during the conference to celebrate the 70th birthday of Prof. Emmanuele DiBenedetto, which was held at “Il Palazzone” in Cortona from June 18th to 24th, 2017. The papers are focused on current research topics regarding the qualitative properties of solutions, connections with calculus of variations, Harnack inequality and regularity theory. Some papers are also related to various applications. Many of the authors have shared with Prof. DiBenedetto an intense scientific and personal collaboration, while many others have taken inspiration from and further developed his field of research. The topics of the conference are certainly of great interest for the international mathematical community.

Handbook of Differential Equations:Stationary Partial Differential Equations

Download Handbook of Differential Equations:Stationary Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080461077
Total Pages : 625 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Equations:Stationary Partial Differential Equations by : Michel Chipot

Download or read book Handbook of Differential Equations:Stationary Partial Differential Equations written by Michel Chipot and published by Elsevier. This book was released on 2005-08-19 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.Partial differential equations represent one of the most rapidly developing topics in mathematics. This is due to their numerous applications in science and engineering on the one hand and to the challenge and beauty of associated mathematical problems on the other.Key features:- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.

Polyharmonic Boundary Value Problems

Download Polyharmonic Boundary Value Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642122450
Total Pages : 444 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Polyharmonic Boundary Value Problems by : Filippo Gazzola

Download or read book Polyharmonic Boundary Value Problems written by Filippo Gazzola and published by Springer. This book was released on 2010-05-26 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. It provides rapid access to recent results and references.

The obstacle problem

Download The obstacle problem PDF Online Free

Author :
Publisher : Edizioni della Normale
ISBN 13 : 9788876422492
Total Pages : 0 pages
Book Rating : 4.4/5 (224 download)

DOWNLOAD NOW!


Book Synopsis The obstacle problem by : Luis Angel Caffarelli

Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

Superlinear Parabolic Problems

Download Superlinear Parabolic Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764384425
Total Pages : 593 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Superlinear Parabolic Problems by : Pavol Quittner

Download or read book Superlinear Parabolic Problems written by Pavol Quittner and published by Springer Science & Business Media. This book was released on 2007-12-16 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 568 pages
Book Rating : 4.:/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Superlinear Parabolic Problems

Download Superlinear Parabolic Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030182223
Total Pages : 738 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Superlinear Parabolic Problems by : Prof. Dr. Pavol Quittner

Download or read book Superlinear Parabolic Problems written by Prof. Dr. Pavol Quittner and published by Springer. This book was released on 2019-06-13 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics. The first edition of this book has become one of the standard references in the field. This second edition provides a revised text and contains a number of updates reflecting significant recent advances that have appeared in this growing field since the first edition.

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1226 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 1226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Methods on Nonlinear Elliptic Equations

Download Methods on Nonlinear Elliptic Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601330062
Total Pages : 0 pages
Book Rating : 4.3/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Methods on Nonlinear Elliptic Equations by : Wenxiong Chen

Download or read book Methods on Nonlinear Elliptic Equations written by Wenxiong Chen and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Download Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations PDF Online Free

Author :
Publisher : Hindawi Publishing Corporation
ISBN 13 : 9774540395
Total Pages : 205 pages
Book Rating : 4.7/5 (745 download)

DOWNLOAD NOW!


Book Synopsis Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations by : Vicentiu D. Radulescu

Download or read book Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations written by Vicentiu D. Radulescu and published by Hindawi Publishing Corporation. This book was released on 2008 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.

Two-Point Boundary Value Problems: Lower and Upper Solutions

Download Two-Point Boundary Value Problems: Lower and Upper Solutions PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080462472
Total Pages : 502 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Two-Point Boundary Value Problems: Lower and Upper Solutions by : C. De Coster

Download or read book Two-Point Boundary Value Problems: Lower and Upper Solutions written by C. De Coster and published by Elsevier. This book was released on 2006-03-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Boundary Value Problems From Higher Order Differential Equations

Download Boundary Value Problems From Higher Order Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814513636
Total Pages : 321 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems From Higher Order Differential Equations by : Ravi P Agarwal

Download or read book Boundary Value Problems From Higher Order Differential Equations written by Ravi P Agarwal and published by World Scientific. This book was released on 1986-07-01 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Some ExamplesLinear ProblemsGreen's FunctionMethod of Complementary FunctionsMethod of AdjointsMethod of ChasingSecond Order EquationsError Estimates in Polynomial InterpolationExistence and UniquenessPicard's and Approximate Picard's MethodQuasilinearization and Approximate QuasilinearizationBest Possible Results: Weight Function TechniqueBest Possible Results: Shooting MethodsMonotone Convergence and Further ExistenceUniqueness Implies ExistenceCompactness Condition and Generalized SolutionsUniqueness Implies UniquenessBoundary Value FunctionsTopological MethodsBest Possible Results: Control Theory MethodsMatching MethodsMaximal SolutionsMaximum PrincipleInfinite Interval ProblemsEquations with Deviating Arguments Readership: Graduate students, numerical analysts as well as researchers who are studying open problems. Keywords:Boundary Value Problems;Ordinary Differential Equations;Green's Function;Quasilinearization;Shooting Methods;Maximal Solutions;Infinite Interval Problems

The Maximum Principle

Download The Maximum Principle PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764381450
Total Pages : 240 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis The Maximum Principle by : Patrizia Pucci

Download or read book The Maximum Principle written by Patrizia Pucci and published by Springer Science & Business Media. This book was released on 2007-12-23 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

Fully Nonlinear Elliptic Equations

Download Fully Nonlinear Elliptic Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821804375
Total Pages : 114 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fully Nonlinear Elliptic Equations by : Luis A. Caffarelli

Download or read book Fully Nonlinear Elliptic Equations written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1995 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Mathematical Foundation of Turbulent Viscous Flows

Download Mathematical Foundation of Turbulent Viscous Flows PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540324542
Total Pages : 265 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Foundation of Turbulent Viscous Flows by : Peter Constantin

Download or read book Mathematical Foundation of Turbulent Viscous Flows written by Peter Constantin and published by Springer. This book was released on 2005-11-24 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.

Singular Elliptic Problems

Download Singular Elliptic Problems PDF Online Free

Author :
Publisher :
ISBN 13 : 9780197727270
Total Pages : 0 pages
Book Rating : 4.7/5 (272 download)

DOWNLOAD NOW!


Book Synopsis Singular Elliptic Problems by : Marius Ghergu

Download or read book Singular Elliptic Problems written by Marius Ghergu and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: