Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Ex Situ Catalytic Fast Pyrolysis Of Lignocellulosic Biomass To Hydrocarbon Fuels 2020 State Of Technology
Download Ex Situ Catalytic Fast Pyrolysis Of Lignocellulosic Biomass To Hydrocarbon Fuels 2020 State Of Technology full books in PDF, epub, and Kindle. Read online Ex Situ Catalytic Fast Pyrolysis Of Lignocellulosic Biomass To Hydrocarbon Fuels 2020 State Of Technology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels by : Abhijit Dutta
Download or read book Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels written by Abhijit Dutta and published by . This book was released on 2018 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fast Pyrolysis of Biomass by : Robert C Brown
Download or read book Fast Pyrolysis of Biomass written by Robert C Brown and published by Royal Society of Chemistry. This book was released on 2017-07-07 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast pyrolysis and related catalytic pyrolysis are of increasing interest as pathways to advanced biofuels that closely mimic traditional petroleum products. Research has moved from empirical investigations to more fundamental studies of pyrolysis mechanisms. Theories on the chemical and physical pathways from plant polymers to pyrolysis products have proliferated as a result. This book brings together the latest developments in pyrolysis science and technology. It examines, reviews and challenges the unresolved and sometimes controversial questions about pyrolysis, helping advance the understanding of this important technology and stimulating discussion on the various competing theories of thermal deconstruction of plant polymers. Beginning with an introduction to the biomass-to-biofuels process via fast pyrolysis and catalytic pyrolysis, chapters address prominent questions such as whether free radicals or concerted reactions dominate deconstruction reactions. Finally, the book concludes with an economic analysis of fast pyrolysis versus catalytic pyrolysis. This book will be of interest to advanced students and researchers interested in the science behind renewable fuel technology, and particularly the thermochemical processing of biomass.
Book Synopsis Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels by : Abhijit Dutta
Download or read book Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels written by Abhijit Dutta and published by . This book was released on 2020 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Pyrolysis of Biomass by : Shurong Wang
Download or read book Pyrolysis of Biomass written by Shurong Wang and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-12-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of societies fossil energy is no longer the only energy resource, and increasing attention had been paid to alternative energy. Biomass is considered to be one of the alternatives due to efficiency and low cost. This book presents biomass pyrolysis behavior for three main components: Cellulose, Hemicellulose and Lignin, and discusses the influence of mineral salts , zeolite catalysts and metal oxide on their pyrolysis.
Book Synopsis Chemical Catalysts for Biomass Upgrading by : Mark Crocker
Download or read book Chemical Catalysts for Biomass Upgrading written by Mark Crocker and published by John Wiley & Sons. This book was released on 2020-03-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.
Book Synopsis Catalyst Characterization by : Boris Imelik
Download or read book Catalyst Characterization written by Boris Imelik and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.
Book Synopsis Thermochemical Processing of Biomass by : Robert C. Brown
Download or read book Thermochemical Processing of Biomass written by Robert C. Brown and published by John Wiley & Sons. This book was released on 2019-05-28 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes Bringing together a widely scattered body of information into a single volume, this book provides complete coverage of the many ways that thermochemical processes are used to transform biomass into fuels, chemicals and power. Fully revised and updated, this new edition highlights the substantial progress and recent developments that have been made in this rapidly growing field since publication of the first edition and incorporates up-to-date information in each chapter. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition incorporates two new chapters covering: condensed phased reactions of thermal deconstruction of biomass and life cycle analysis of thermochemical processing systems. It offers a new introductory chapter that provides a more comprehensive overview of thermochemical technologies. The book also features fresh perspectives from new authors covering such evolving areas as solvent liquefaction and hybrid processing. Other chapters cover combustion, gasification, fast pyrolysis, upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of thermochemically producing fuels and power, and more. Features contributions by a distinguished group of European and American researchers offering a broad and unified description of thermochemical processing options for biomass Combines an overview of the current status of thermochemical biomass conversion as well as engineering aspects to appeal to the broadest audience Edited by one of Biofuels Digest’s "Top 100 People" in bioenergy for six consecutive years Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition will appeal to all academic researchers, process chemists, and engineers working in the field of biomass conversion to fuels and chemicals. It is also an excellent book for graduate and advanced undergraduate students studying biomass, biofuels, renewable resources, and energy and power generation.
Book Synopsis Process Intensification and Integration for Sustainable Design by : Dominic C. Y. Foo
Download or read book Process Intensification and Integration for Sustainable Design written by Dominic C. Y. Foo and published by John Wiley & Sons. This book was released on 2020-12-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.
Book Synopsis Urban Energy Systems by : James Keirstead
Download or read book Urban Energy Systems written by James Keirstead and published by Routledge. This book was released on 2013 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyses the technical and social systems that satisfy these needs and asks how methods can be put into practice to achieve this.
Book Synopsis Recent Advances in Pyrolysis by : Hassan Al- Haj Ibrahim
Download or read book Recent Advances in Pyrolysis written by Hassan Al- Haj Ibrahim and published by BoD – Books on Demand. This book was released on 2020-01-22 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pyrolysis is an irreversible thermochemical treatment process of materials at elevated temperatures in an inert atmosphere. It is basically a carbonisation process where an organic material is decomposed to produce a solid residue with high (or higher) carbon content and some volatile products. The decomposition reactions are accompanied in general with polymerisation and isomerisation reactions. The end products of pyrolysis can be controlled by optimizing pyrolysis parameters such as temperature and residence time. Pyrolysis is used heavily in the chemical industry to produce many forms of carbon and other chemicals from petroleum, coal, wood, oil shale, biomass or organic waste materials, and it is the basis of several methods for producing fuel from biomass. Pyrolysis also is the process of conversion of buried organic matter into fossil fuels.
Book Synopsis Fast Pyrolysis of Biomass by : A. V. Bridgwater
Download or read book Fast Pyrolysis of Biomass written by A. V. Bridgwater and published by Cpl Press. This book was released on 1999 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited and updated version of the final report of the IEA Bioenergy Pyrolysis Task, is useful both to newcomers to the subject area and those already involved in research, development, and implementation.
Book Synopsis The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals by : Kostas Triantafyllidis
Download or read book The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals written by Kostas Triantafyllidis and published by Newnes. This book was released on 2013-03-19 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: - Catalytic pyrolysis of lignocellulosic biomass - Hybrid biogasoline by co-processing in FCC units - Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) - Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. - Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes - Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process - Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature
Book Synopsis Biofuels from Lignocellulosic Biomass by : Michael Boot
Download or read book Biofuels from Lignocellulosic Biomass written by Michael Boot and published by John Wiley & Sons. This book was released on 2016-07-05 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts in combustion technology, this is a unique and refreshing perspective on the current biofuel discussion, presenting the latest research in this important field. The emphasis throughout this reference is on applications, industrial perspectives and economics, focusing on new classes of biofuels such as butanols, levulinates, benzenoids and others. Clearly structured, each chapter presents a new class of biofuel and discusses such topics as production pathways, fuel properties and its impact on engines. The result is a fascinating, user-oriented overview of new classes of biofuels beyond bioethanol.
Book Synopsis Integrated Forest Biorefineries by : Lew Christopher
Download or read book Integrated Forest Biorefineries written by Lew Christopher and published by Royal Society of Chemistry. This book was released on 2012-09-30 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
Book Synopsis Production of Biofuels and Chemicals with Microwave by : Zhen Fang
Download or read book Production of Biofuels and Chemicals with Microwave written by Zhen Fang and published by Springer. This book was released on 2016-09-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Book Synopsis Handbook of Biomass Valorization for Industrial Applications by : Shahid ul-Islam
Download or read book Handbook of Biomass Valorization for Industrial Applications written by Shahid ul-Islam and published by John Wiley & Sons. This book was released on 2022-01-05 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
Book Synopsis Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid by : Farid Gumerov
Download or read book Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid written by Farid Gumerov and published by Nova Science Publishers. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A catalyst is a material of constant composition, which accelerates the rate of a chemical reaction by providing a suitable reaction pathway with the lowest activation energy. As the activation energy is lower, more reaction products are formed in the same period of time. Most catalytic reactions encountered in hydrocarbon processing are carried out with porous catalysts to provide a sufficient surface area for the metal dispersion and the ensuing reaction. These catalysts gradually lose their catalytic activity, usually through structural changes, poisoning, or the deposit of extraneous material. A catalyst which can no longer exhibit the necessary activity and/or is specificity required by the user is referred to as a "spent catalyst". Catalysts are critical to the chemical industry and are now used in most industrial chemical processes. Along with the rapid development and wide application of catalysis technology, the amounts of different spent catalysts are increased from year to year. The physical properties of spent catalysts, as well as their composition, are generally different from those of fresh catalysts. For example, spent hydrotreating catalysts contain metal sulfides and coke, and may have additional contaminants that were not present in the fresh catalyst. Catalyst regeneration involves the processing of spent catalysts in order to make them reusable. This is done by restoring the initial properties of spent catalysts and thus restoring their efficiency through a process called regeneration of catalysts. Traditional methods of vapor-air regeneration are energy-consuming and severely limit the number of regeneration cycles. Using supercritical fluid CO2-extraction process, according to some estimates, provides a two-fold energy savings and an increasing number of regeneration cycles possible. This book gathers a series of studies describing new methods for the regeneration of heterogeneous catalysts for important industrial chemical processes. In this book we propose new extraction techniques using supercritical fluid extraction (SFC), which seems to be one of the most promising as a green reaction medium. The feasibility of using supercritical fluid СО2 extraction process was investigated in particular for spent catalyst regeneration. The low regeneration temperature of supercritical carbon dioxide eliminates the risk of thermal deterioration of the catalyst (namely the collapse of the pores), prevents the reduction of the surface area and the sintering, and allows regeneration of catalysts with an activity close to that of fresh catalysts. The results of the implementation of the supercritical fluid СО2 extraction process with respect to samples of industrial deactivated catalysts are provided. A comparison of the characteristics of the regenerated catalyst samples by traditional approaches and the SC-CO2 extraction process is carried out. The possibility of using a supercritical fluid CO2 impregnation technique in the synthesis of a palladium catalyst is also studied.