Global Analysis of Minimal Surfaces

Download Global Analysis of Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642117066
Total Pages : 547 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Global Analysis of Minimal Surfaces by : Ulrich Dierkes

Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.

Regularity of Minimal Surfaces

Download Regularity of Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642117007
Total Pages : 634 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Regularity of Minimal Surfaces by : Ulrich Dierkes

Download or read book Regularity of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.

Isoperimetric Inequalities in Riemannian Manifolds

Download Isoperimetric Inequalities in Riemannian Manifolds PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031379012
Total Pages : 470 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Isoperimetric Inequalities in Riemannian Manifolds by : Manuel Ritoré

Download or read book Isoperimetric Inequalities in Riemannian Manifolds written by Manuel Ritoré and published by Springer Nature. This book was released on 2023-10-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a coherent introduction to isoperimetric inequalities in Riemannian manifolds, featuring many of the results obtained during the last 25 years and discussing different techniques in the area. Written in a clear and appealing style, the book includes sufficient introductory material, making it also accessible to graduate students. It will be of interest to researchers working on geometric inequalities either from a geometric or analytic point of view, but also to those interested in applying the described techniques to their field.

Minimal Surfaces

Download Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642116981
Total Pages : 699 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Minimal Surfaces by : Ulrich Dierkes

Download or read book Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.

Manfredo P. do Carmo – Selected Papers

Download Manfredo P. do Carmo – Selected Papers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642255884
Total Pages : 492 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Manfredo P. do Carmo – Selected Papers by : Manfredo P. do Carmo

Download or read book Manfredo P. do Carmo – Selected Papers written by Manfredo P. do Carmo and published by Springer Science & Business Media. This book was released on 2012-04-02 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of selected academic papers demonstrates the significance of the contribution to mathematics made by Manfredo P. do Carmo. Twice a Guggenheim Fellow and the winner of many prestigious national and international awards, the professor at the institute of Pure and Applied Mathematics in Rio de Janeiro is well known as the author of influential textbooks such as Differential Geometry of Curves and Surfaces. The area of differential geometry is the main focus of this selection, though it also contains do Carmo's own commentaries on his life as a scientist as well as assessment of the impact of his researches and a complete list of his publications. Aspects covered in the featured papers include relations between curvature and topology, convexity and rigidity, minimal surfaces, and conformal immersions, among others. Offering more than just a retrospective focus, the volume deals with subjects of current interest to researchers, including a paper co-authored with Frank Warner on the convexity of hypersurfaces in space forms. It also presents the basic stability results for minimal surfaces in the Euclidean space obtained by the author and his collaborators. Edited by do Carmo's first student, now a celebrated academic in her own right, this collection pays tribute to one of the most distinguished mathematicians.

Elliptic Regularization and Partial Regularity for Motion by Mean Curvature

Download Elliptic Regularization and Partial Regularity for Motion by Mean Curvature PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821825828
Total Pages : 106 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Regularization and Partial Regularity for Motion by Mean Curvature by : Tom Ilmanen

Download or read book Elliptic Regularization and Partial Regularity for Motion by Mean Curvature written by Tom Ilmanen and published by American Mathematical Soc.. This book was released on 1994 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study Brakke's motion of varifolds by mean curvature in the special case that the initial surface is an integral cycle, giving a new existence proof by mean of elliptic regularization. Under a uniqueness hypothesis, we obtain a weakly continuous family of currents solving Brakke's motion. These currents remain within the corresponding level-set motion by mean curvature, as defined by Evans-Spruck and Chen-Giga-Goto. Now let [italic capital]T0 be the reduced boundary of a bounded set of finite perimeter in [italic capital]R[superscript italic]n. If the level-set motion of the support of [italic capital]T0 does not develop positive Lebesgue measure, then there corresponds a unique integral [italic]n-current [italic capital]T, [partial derivative/boundary/degree of a polynomial symbol][italic capital]T = [italic capital]T0, whose time-slices form a unit density Brakke motion. Using Brakke's regularity theorem, spt [italic capital]T is smooth [script capital]H[superscript italic]n-almost everywhere. In consequence, almost every level-set of the level-set flow is smooth [script capital]H[superscript italic]n-almost everywhere in space-time.

European Congress of Mathematics

Download European Congress of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783764354978
Total Pages : 364 pages
Book Rating : 4.3/5 (549 download)

DOWNLOAD NOW!


Book Synopsis European Congress of Mathematics by : Antal Balog

Download or read book European Congress of Mathematics written by Antal Balog and published by Springer Science & Business Media. This book was released on 1998-07-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1228 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 1228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces

Download Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 364229846X
Total Pages : 128 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces by : Steffen Fröhlich

Download or read book Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces written by Steffen Fröhlich and published by Springer. This book was released on 2012-06-30 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for advanced students and young researchers interested in the analysis of partial differential equations and differential geometry. It discusses elementary concepts of surface geometry in higher-dimensional Euclidean spaces, in particular the differential equations of Gauss-Weingarten together with various integrability conditions and corresponding surface curvatures. It includes a chapter on curvature estimates for such surfaces, and, using results from potential theory and harmonic analysis, it addresses geometric and analytic methods to establish the existence and regularity of Coulomb frames in their normal bundles, which arise as critical points for a functional of total torsion.

Handbook of Convex Geometry

Download Handbook of Convex Geometry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080934390
Total Pages : 803 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Convex Geometry by : Bozzano G Luisa

Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.

Lecture Notes on Mean Curvature Flow

Download Lecture Notes on Mean Curvature Flow PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034801459
Total Pages : 175 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Mean Curvature Flow by : Carlo Mantegazza

Download or read book Lecture Notes on Mean Curvature Flow written by Carlo Mantegazza and published by Springer Science & Business Media. This book was released on 2011-07-28 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.

Convex Bodies: The Brunn–Minkowski Theory

Download Convex Bodies: The Brunn–Minkowski Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107471613
Total Pages : 752 pages
Book Rating : 4.1/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Convex Bodies: The Brunn–Minkowski Theory by : Rolf Schneider

Download or read book Convex Bodies: The Brunn–Minkowski Theory written by Rolf Schneider and published by Cambridge University Press. This book was released on 2013-10-31 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of this monograph is the Brunn–Minkowski theory, which can be used to great effect in studying such ideas as volume and surface area and their generalizations. In particular, the notions of mixed volume and mixed area measure arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered here in detail. The author presents a comprehensive introduction to convex bodies, including full proofs for some deeper theorems. The book provides hints and pointers to connections with other fields and an exhaustive reference list. This second edition has been considerably expanded to reflect the rapid developments of the past two decades. It includes new chapters on valuations on convex bodies, on extensions like the Lp Brunn–Minkowski theory, and on affine constructions and inequalities. There are also many supplements and updates to the original chapters, and a substantial expansion of chapter notes and references.

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Download Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8876424296
Total Pages : 336 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations by : Giovanni Bellettini

Download or read book Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations written by Giovanni Bellettini and published by Springer. This book was released on 2014-05-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

Global Differential Geometry

Download Global Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642228429
Total Pages : 520 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Global Differential Geometry by : Christian Bär

Download or read book Global Differential Geometry written by Christian Bär and published by Springer Science & Business Media. This book was released on 2011-12-18 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.

Comparison Geometry

Download Comparison Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521592222
Total Pages : 280 pages
Book Rating : 4.5/5 (922 download)

DOWNLOAD NOW!


Book Synopsis Comparison Geometry by : Karsten Grove

Download or read book Comparison Geometry written by Karsten Grove and published by Cambridge University Press. This book was released on 1997-05-13 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.

New Trends in the Applications of Differential Equations in Sciences

Download New Trends in the Applications of Differential Equations in Sciences PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031532120
Total Pages : 483 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis New Trends in the Applications of Differential Equations in Sciences by : Angela Slavova

Download or read book New Trends in the Applications of Differential Equations in Sciences written by Angela Slavova and published by Springer Nature. This book was released on with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Course in Minimal Surfaces

Download A Course in Minimal Surfaces PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470476401
Total Pages : 330 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course in Minimal Surfaces by : Tobias Holck Colding

Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.