Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Ergodic Theory Symbolic Dynamics And Hyperbolic Spaces
Download Ergodic Theory Symbolic Dynamics And Hyperbolic Spaces full books in PDF, epub, and Kindle. Read online Ergodic Theory Symbolic Dynamics And Hyperbolic Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces by : Timothy, Bedford
Download or read book Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces written by Timothy, Bedford and published by . This book was released on 1991 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces by : T. Bedford
Download or read book Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces written by T. Bedford and published by Oxford University Press, USA. This book was released on 1991 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces by : M. Bachir Bekka
Download or read book Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces written by M. Bachir Bekka and published by Cambridge University Press. This book was released on 2000-05-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Book Synopsis Symbolic Dynamics by : Bruce P. Kitchens
Download or read book Symbolic Dynamics written by Bruce P. Kitchens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.
Book Synopsis Topological and Ergodic Theory of Symbolic Dynamics by : Henk Bruin
Download or read book Topological and Ergodic Theory of Symbolic Dynamics written by Henk Bruin and published by American Mathematical Society. This book was released on 2023-01-20 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, square-free shifts, density shifts, $mathcal{B}$-free shifts, Bratteli-Vershik systems, enumeration scales, amorphic complexity, and a modern and complete treatment of kneading theory. Later, he provides an overview of automata and linguistic complexity (Chomsky's hierarchy). The necessary background for the book varies, but for most of it a solid knowledge of real analysis and linear algebra and first courses in probability and measure theory, metric spaces, number theory, topology, and set theory suffice. Most of the exercises have solutions in the back of the book.
Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Book Synopsis An Introduction to Symbolic Dynamics and Coding by : Douglas Lind
Download or read book An Introduction to Symbolic Dynamics and Coding written by Douglas Lind and published by Cambridge University Press. This book was released on 2021-01-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary introduction to symbolic dynamics, updated to describe the main advances in the subject since the original publication in 1995.
Book Synopsis Ergodic Theory and Dynamical Systems by : Idris Assani
Download or read book Ergodic Theory and Dynamical Systems written by Idris Assani and published by Walter de Gruyter. This book was released on 2013-12-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the workshop on recent developments in ergodic theory and dynamical systems on March 2011 and March 2012 at the University of North Carolina at Chapel Hill. The articles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These contributions illustrate the connections between ergodic theory and dynamical systems, number theory, harmonic analysis, probability, and algebra. Two surveys are included which give a nice introduction for interested young or senior researcher to some active research areas. Overall this volume provides a very useful blend of techniques and methods as well as directions of research on general convergence phenomena in ergodic theory and dynamical systems.
Download or read book Ergodic Theory written by Cesar E. Silva and published by Springer Nature. This book was released on 2023-07-31 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
Book Synopsis Ergodic Theory by : Manfred Einsiedler
Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Book Synopsis Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby by : Joseph Auslander
Download or read book Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby written by Joseph Auslander and published by American Mathematical Soc.. This book was released on 2016-11-29 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of three conferences in Ergodic Theory and Symbolic Dynamics: the Oxtoby Centennial Conference, held from October 30–31, 2010, at Bryn Mawr College; the Williams Ergodic Theory Conference, held from July 27–29, 2012, at Williams College; and the AMS Special Session on Ergodic Theory and Symbolic Dynamics, held from January 17–18, 2014, in Baltimore, MD. This volume contains articles covering a variety of topics in measurable, symbolic and complex dynamics. It also includes a survey article on the life and work of John Oxtoby, providing a source of information about the many ways Oxtoby's work influenced mathematical thought in this and other fields.
Book Synopsis Dynamical Systems, Ergodic Theory and Applications by : L.A. Bunimovich
Download or read book Dynamical Systems, Ergodic Theory and Applications written by L.A. Bunimovich and published by Springer Science & Business Media. This book was released on 2000-04-05 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
Book Synopsis Applied Symbolic Dynamics and Chaos by : Bai-lin Hao
Download or read book Applied Symbolic Dynamics and Chaos written by Bai-lin Hao and published by World Scientific. This book was released on 1998 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.
Book Synopsis Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems by : Bernold Fiedler
Download or read book Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems written by Bernold Fiedler and published by Springer Science & Business Media. This book was released on 2001 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes and highlights progress in Dynamical Systems achieved during six years of the German Priority Research Program "Ergotic Theory, Analysis, and Efficient Simulation of Dynamical Systems", funded by the Deutsche Forschungsgemeinschaft (DFG). The three fundamental topics of large time behavior, dimension, and measure are tackled with by a rich circle of uncompromisingly rigorous mathematical concepts. The range of applied issues comprises such diverse areas as crystallization and dendrite growth, the dynamo effect, efficient simulation of biomolecules, fluid dynamics and reacting flows, mechanical problems involving friction, population biology, the spread of infectious diseases, and quantum chaos. The surveys in the book are addressed to experts and non-experts in the mathematical community alike. In addition they intend to convey the significance of the results for applications fair into the neighboring disciplines of Science.
Book Synopsis Ergodic Theory and Fractal Geometry by : Hillel Furstenberg
Download or read book Ergodic Theory and Fractal Geometry written by Hillel Furstenberg and published by American Mathematical Society. This book was released on 2014-08-08 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.
Book Synopsis Equilibrium States in Ergodic Theory by : Gerhard Keller
Download or read book Equilibrium States in Ergodic Theory written by Gerhard Keller and published by Cambridge University Press. This book was released on 1998-01-22 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a one semester course, this book provides a self contained introduction to the ergodic theory of equilibrium states.
Book Synopsis Ergodic Theory via Joinings by : Eli Glasner
Download or read book Ergodic Theory via Joinings written by Eli Glasner and published by American Mathematical Soc.. This book was released on 2003 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook focuses on the abstract aspects of topological dynamics and ergodic theory, and presents several examples of the joining technique. The author covers dynamical systems on Lebesgue spaces, the Koopman representation, isometric and weakly mixing extensions, the Furstenberg-Zimmer structure theorem, and the entropy theory for Z-systems. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).