Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Eigenvalues Of The Laplacian For Hecke Triangle Groups
Download Eigenvalues Of The Laplacian For Hecke Triangle Groups full books in PDF, epub, and Kindle. Read online Eigenvalues Of The Laplacian For Hecke Triangle Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Eigenvalues of the Laplacian for Hecke Triangle Groups by : Dennis A. Hejhal
Download or read book Eigenvalues of the Laplacian for Hecke Triangle Groups written by Dennis A. Hejhal and published by American Mathematical Soc.. This book was released on 1992 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Paper I is concerned with computational aspects of the Selberg trace formalism, considering the usual type of eigenfunction and including an analysis of pseudo cusp forms and their residual effects. Paper II examines the modular group PSL (2, [bold]Z), as such groups have both a discrete and continuous spectrum. This paper only examines the discrete side of the spectrum.
Book Synopsis Emerging Applications of Number Theory by : Dennis A. Hejhal
Download or read book Emerging Applications of Number Theory written by Dennis A. Hejhal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
Book Synopsis Computations with Modular Forms by : Gebhard Böckle
Download or read book Computations with Modular Forms written by Gebhard Böckle and published by Springer Science & Business Media. This book was released on 2014-01-23 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
Book Synopsis Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology by : Jens Bölte
Download or read book Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology written by Jens Bölte and published by Cambridge University Press. This book was released on 2012 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts introduce this classical subject with exciting new applications in theoretical physics.
Book Synopsis Fourier Analysis on Finite Groups and Applications by : Audrey Terras
Download or read book Fourier Analysis on Finite Groups and Applications written by Audrey Terras and published by Cambridge University Press. This book was released on 1999-03-28 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.
Book Synopsis Imbeddings of Three-Manifold Groups by : Francisco González-Acuña
Download or read book Imbeddings of Three-Manifold Groups written by Francisco González-Acuña and published by American Mathematical Soc.. This book was released on 1992 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper deals with the two broad questions of how 3-manifold groups imbed in one another and how such imbeddings relate to any corresponding [lowercase Greek]Pi1-injective maps. In particular, we are interested in 1) determining which 3-manifold groups are no cohopfian, that is, which 3-manifold groups imbed properly in themselves, 2) determining the knot subgroups of a knot group, and 3) determining when surgery on a knot [italic]K yields a lens (or "lens-like") space and the relationship of such a surgery to the knot-subgroup structure of [lowercase Greek]Pi1([italic]S3 - [italic]K). Our work requires the formulation of a deformation theorem for [lowercase Greek]Pi1-injective maps between certain kinds of Haken manifolds and the development of some algebraic tools.
Book Synopsis Loop Groups, Discrete Versions of Some Classical Integrable Systems, and Rank 2 Extensions by : Percy Deift
Download or read book Loop Groups, Discrete Versions of Some Classical Integrable Systems, and Rank 2 Extensions written by Percy Deift and published by American Mathematical Soc.. This book was released on 1992 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors show how to interpret recent results of Moser and Veselov on discrete versions of a class of classical integrable systems, in terms of a loop group framework. In this framework the discrete systems appear as time-one maps of integrable Hamiltonian flows. Earlier results of Moser on isospectral deformations of rank 2 extensions of a fixed matrix, can also be incorporated into their scheme.
Book Synopsis Degenerate Principal Series for Symplectic Groups by : Chris Jantzen
Download or read book Degenerate Principal Series for Symplectic Groups written by Chris Jantzen and published by American Mathematical Soc.. This book was released on 1993 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper is concerned with induced representations for $p$-adic groups. In particular, Jantzen examines the question of reducibility in the case where the inducing subgroup is a maximal parabolic subgroup of $Sp_{2n (F)$ and the inducing representation is one-dimensional. Two different approaches to this problem are used. The first, based on the work of Casselman and of Gustafson, reduces the problem to the corresponding question about an associated finite-dimensional representation of a certain Hecke algebra. The second approach is based on a technique of Tadi\'c and involves an analysis of Jacquet modules. This is used to obtain a more general result on induced representations, which may be used to deal with the problem when the inducing representation satisfies a regularity condition. The same basic argument is also applied in a case-by-case fashion to nonregular cases.
Book Synopsis Unraveling the Integral Knot Concordance Group by : Neal W. Stoltzfus
Download or read book Unraveling the Integral Knot Concordance Group written by Neal W. Stoltzfus and published by American Mathematical Soc.. This book was released on 1977 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: The group of concordance classes of high dimensional homotopy spheres knotted in codimension two in the standard sphere has an intricate algebraic structure which this paper unravels. The first level of invariants is given by the classical Alexander polynomial. By means of a transfer construction, the integral Seifert matrices of knots whose Alexander polynomial is a power of a fixed irreducible polynomial are related to forms with the appropriate Hermitian symmetry on torsion free modules over an order in the algebraic number field determined by the Alexander polynomial. This group is then explicitly computed in terms of standard arithmetic invariants. In the symmetric case, this computation shows there are no elements of order four with an irreducible Alexander polynomial. Furthermore, the order is not necessarily Dedekind and non-projective modules can occur. The second level of invariants is given by constructing an exact sequence relating the global concordance group to the individual pieces described above. The integral concordance group is then computed by a localization exact sequence relating it to the rational group computed by J. Levine and a group of torsion linking forms.
Book Synopsis Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications by : Donald St. P. Richards
Download or read book Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications written by Donald St. P. Richards and published by American Mathematical Soc.. This book was released on 1992 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first set of proceedings to be devoted entirely to the theory of hypergeometric functions defined on domains of positivity. Most of the scientific areas in which these functions are applied include analytic number theory, combinatorics, harmonic analysis, random walks, representation theory, and mathematical physics - are represented here. This volume is based largely on lectures presented at a Special Session at the AMS meeting in Tampa, Florida in March 1991, which was devoted to hypergeometric functions of matrix argument and to fostering communication among representatives of the diverse scientific areas in which these functions are utilized. Accessible to graduate students and others seeking an introduction to the state of the art in this area, this book is a suitable text for advanced graduate seminar courses for it contains many open problems.
Book Synopsis Selberg Zeta Functions and Transfer Operators by : Markus Szymon Fraczek
Download or read book Selberg Zeta Functions and Transfer Operators written by Markus Szymon Fraczek and published by Springer. This book was released on 2017-05-11 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces.
Book Synopsis Arithmetic Groups and Their Generalizations by : Lizhen Ji
Download or read book Arithmetic Groups and Their Generalizations written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2008 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.
Book Synopsis Invariant Subsemigroups of Lie Groups by : Karl-Hermann Neeb
Download or read book Invariant Subsemigroups of Lie Groups written by Karl-Hermann Neeb and published by American Mathematical Soc.. This book was released on 1993 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: First we investigate the structure of Lie algebras with invariant cones and give a characterization of those Lie algebras containing pointed and generating invariant cones. Then we study the global structure of invariant Lie semigroups, and how far Lie's third theorem remains true for invariant cones and Lie semigroups.
Book Synopsis Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane by : Audrey Terras
Download or read book Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane written by Audrey Terras and published by Springer Science & Business Media. This book was released on 2013-09-12 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Book Synopsis Associated Graded Algebra of a Gorenstein Artin Algebra by : Anthony Ayers Iarrobino
Download or read book Associated Graded Algebra of a Gorenstein Artin Algebra written by Anthony Ayers Iarrobino and published by American Mathematical Soc.. This book was released on 1994 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1904, Macaulay described the Hilbert function of the intersection of two plane curve branches: It is the sum of a sequence of functions of simple form. This monograph describes the structure of the tangent cone of the intersection underlying this symmetry. Iarrobino generalizes Macaulay's result beyond complete intersections in two variables to Gorenstein Artin algebras in an arbitrary number of variables. He shows that the tangent cone of a Gorenstein singularity contains a sequence of ideals whose successive quotients are reflexive modules. Applications are given to determining the multiplicity and orders of generators of Gorenstein ideals and to problems of deforming singular mapping germs. Also included are a survey of results concerning the Hilbert function of Gorenstein Artin algebras and an extensive bibliography.
Book Synopsis Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines by : Eriko Hironaka
Download or read book Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines written by Eriko Hironaka and published by American Mathematical Soc.. This book was released on 1993 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work studies abelian branched coverings of smooth complex projective surfaces from the topological viewpoint. Geometric information about the coverings (such as the first Betti numbers of a smooth model or intersections of embedded curves) is related to topological and combinatorial information about the base space and branch locus. Special attention is given to examples in which the base space is the complex projective plane and the branch locus is a configuration of lines.
Book Synopsis Projective Modules over Lie Algebras of Cartan Type by : Daniel Ken Nakano
Download or read book Projective Modules over Lie Algebras of Cartan Type written by Daniel Ken Nakano and published by American Mathematical Soc.. This book was released on 1992 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper investigates the question of linkage and block theory for Lie algebras of Cartan type. The second part of the paper deals mainly with block structure and projective modules of Lies algebras of types W and K.