Dynamical Systems II

Download Dynamical Systems II PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662067895
Total Pages : 296 pages
Book Rating : 4.0/5 (678 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems II by : Ya G. Sinai

Download or read book Dynamical Systems II written by Ya G. Sinai and published by . This book was released on 2014-01-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dynamical Systems on 2- and 3-Manifolds

Download Dynamical Systems on 2- and 3-Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319448471
Total Pages : 314 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems on 2- and 3-Manifolds by : Viacheslav Z. Grines

Download or read book Dynamical Systems on 2- and 3-Manifolds written by Viacheslav Z. Grines and published by Springer. This book was released on 2016-11-11 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Dynamical Systems, Ergodic Theory and Applications

Download Dynamical Systems, Ergodic Theory and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540663164
Total Pages : 476 pages
Book Rating : 4.6/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems, Ergodic Theory and Applications by : L.A. Bunimovich

Download or read book Dynamical Systems, Ergodic Theory and Applications written by L.A. Bunimovich and published by Springer Science & Business Media. This book was released on 2000-04-05 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.

Handbook of Dynamical Systems

Download Handbook of Dynamical Systems PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0080532845
Total Pages : 1099 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Dynamical Systems by : B. Fiedler

Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Random Dynamical Systems

Download Random Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662128780
Total Pages : 590 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Random Dynamical Systems by : Ludwig Arnold

Download or read book Random Dynamical Systems written by Ludwig Arnold and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Introduction to the Modern Theory of Dynamical Systems

Download Introduction to the Modern Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575577
Total Pages : 828 pages
Book Rating : 4.5/5 (755 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Modern Theory of Dynamical Systems by : Anatole Katok

Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Ergodic Theory

Download Ergodic Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461569273
Total Pages : 487 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory by : I. P. Cornfeld

Download or read book Ergodic Theory written by I. P. Cornfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.

Dynamical Systems and Ergodic Theory

Download Dynamical Systems and Ergodic Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575997
Total Pages : 198 pages
Book Rating : 4.5/5 (759 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Ergodic Theory by : Mark Pollicott

Download or read book Dynamical Systems and Ergodic Theory written by Mark Pollicott and published by Cambridge University Press. This book was released on 1998-01-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Dynamical Systems

Download Dynamical Systems PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486477053
Total Pages : 276 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems by : Shlomo Sternberg

Download or read book Dynamical Systems written by Shlomo Sternberg and published by Courier Corporation. This book was released on 2010-07-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.

Advanced Topics in the Arithmetic of Elliptic Curves

Download Advanced Topics in the Arithmetic of Elliptic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208513
Total Pages : 482 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Advanced Topics in the Arithmetic of Elliptic Curves by : Joseph H. Silverman

Download or read book Advanced Topics in the Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.

Invitation to Dynamical Systems

Download Invitation to Dynamical Systems PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486485943
Total Pages : 402 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman

Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2012-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.

Dynamical Systems VII

Download Dynamical Systems VII PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540181767
Total Pages : 360 pages
Book Rating : 4.1/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems VII by : V.I. Arnol'd

Download or read book Dynamical Systems VII written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 1993-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.

Geometric Theory of Dynamical Systems

Download Geometric Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461257034
Total Pages : 208 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Dynamical Systems by : J. Jr. Palis

Download or read book Geometric Theory of Dynamical Systems written by J. Jr. Palis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Dynamical Systems

Download Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447148355
Total Pages : 214 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems by : Luis Barreira

Download or read book Dynamical Systems written by Luis Barreira and published by Springer Science & Business Media. This book was released on 2012-12-02 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.

Differential Equations and Dynamical Systems

Download Differential Equations and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468402498
Total Pages : 530 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko

Download or read book Differential Equations and Dynamical Systems written by Lawrence Perko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Download Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211409
Total Pages : 475 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by : John Guckenheimer

Download or read book Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Dynamical Systems III

Download Dynamical Systems III PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662025353
Total Pages : 305 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems III by : Vladimir I. Arnol'd

Download or read book Dynamical Systems III written by Vladimir I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the fundamental principles, problems, and methods of elassical mechanics focussing on its mathematical aspects. The authors have striven to give an exposition stressing the working apparatus of elassical mechanics, rather than its physical foundations or applications. This appara tus is basically contained in Chapters 1, 3,4 and 5. Chapter 1 is devoted to the fundamental mathematical models which are usually employed to describe the motion of real mechanical systems. Special consideration is given to the study of motion under constraints, and also to problems concerned with the realization of constraints in dynamics. Chapter 3 is concerned with the symmetry groups of mechanical systems and the corresponding conservation laws. Also discussed are various aspects of the theory of the reduction of order for systems with symmetry, often used in applications. Chapter 4 contains abrief survey of various approaches to the problem of the integrability of the equations of motion, and discusses some of the most general and effective methods of integrating these equations. Various elassical examples of integrated problems are outlined. The material pre sen ted in this chapter is used in Chapter 5, which is devoted to one of the most fruitful branches of mechanics - perturbation theory. The main task of perturbation theory is the investigation of problems of mechanics which are" elose" to exact1y integrable problems.