Distributed Machine Learning and Gradient Optimization

Download Distributed Machine Learning and Gradient Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811634203
Total Pages : 179 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Distributed Machine Learning and Gradient Optimization by : Jiawei Jiang

Download or read book Distributed Machine Learning and Gradient Optimization written by Jiawei Jiang and published by Springer Nature. This book was released on 2022-02-23 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Download Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 160198460X
Total Pages : 138 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd

Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Optimization Algorithms for Distributed Machine Learning

Download Optimization Algorithms for Distributed Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303119067X
Total Pages : 137 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Optimization Algorithms for Distributed Machine Learning by : Gauri Joshi

Download or read book Optimization Algorithms for Distributed Machine Learning written by Gauri Joshi and published by Springer Nature. This book was released on 2022-11-25 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.

Proceedings of COMPSTAT'2010

Download Proceedings of COMPSTAT'2010 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3790826049
Total Pages : 627 pages
Book Rating : 4.7/5 (98 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of COMPSTAT'2010 by : Yves Lechevallier

Download or read book Proceedings of COMPSTAT'2010 written by Yves Lechevallier and published by Springer Science & Business Media. This book was released on 2010-11-08 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.

Distributed Learning Systems with First-Order Methods

Download Distributed Learning Systems with First-Order Methods PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680837018
Total Pages : pages
Book Rating : 4.8/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Distributed Learning Systems with First-Order Methods by : Ji Liu

Download or read book Distributed Learning Systems with First-Order Methods written by Ji Liu and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides students and researchers the groundwork for developing faster and better research results in this dynamic area of research.

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026201646X
Total Pages : 509 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Suvrit Sra

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Machine Learning Refined

Download Machine Learning Refined PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108480721
Total Pages : 597 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Refined by : Jeremy Watt

Download or read book Machine Learning Refined written by Jeremy Watt and published by Cambridge University Press. This book was released on 2020-01-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Scaling Up Machine Learning

Download Scaling Up Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521192242
Total Pages : 493 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Scaling Up Machine Learning by : Ron Bekkerman

Download or read book Scaling Up Machine Learning written by Ron Bekkerman and published by Cambridge University Press. This book was released on 2012 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.

Neural Networks: Tricks of the Trade

Download Neural Networks: Tricks of the Trade PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642352898
Total Pages : 753 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks: Tricks of the Trade by : Grégoire Montavon

Download or read book Neural Networks: Tricks of the Trade written by Grégoire Montavon and published by Springer. This book was released on 2012-11-14 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Scalable and Distributed Machine Learning and Deep Learning Patterns

Download Scalable and Distributed Machine Learning and Deep Learning Patterns PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1668498057
Total Pages : 315 pages
Book Rating : 4.6/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Scalable and Distributed Machine Learning and Deep Learning Patterns by : Thomas, J. Joshua

Download or read book Scalable and Distributed Machine Learning and Deep Learning Patterns written by Thomas, J. Joshua and published by IGI Global. This book was released on 2023-08-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work. This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs.

Distributed Optimization and Learning

Download Distributed Optimization and Learning PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443216371
Total Pages : 288 pages
Book Rating : 4.4/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Distributed Optimization and Learning by : Zhongguo Li

Download or read book Distributed Optimization and Learning written by Zhongguo Li and published by Elsevier. This book was released on 2024-07-18 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes. - Provides a series of the latest results, including but not limited to, distributed cooperative and competitive optimization, machine learning, and optimal resource allocation - Presents the most recent advances in theory and applications of distributed optimization and machine learning, including insightful connections to traditional control techniques - Offers numerical and simulation results in each chapter in order to reflect engineering practice and demonstrate the main focus of developed analysis and synthesis approaches

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Download Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher :
ISBN 13 : 9781450336642
Total Pages : 2338 pages
Book Rating : 4.3/5 (366 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining by : Longbing Cao

Download or read book Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining written by Longbing Cao and published by . This book was released on 2015 with total page 2338 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030630765
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Qiang Yang

Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Distributed Optimization in Networked Systems

Download Distributed Optimization in Networked Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811985596
Total Pages : 282 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Distributed Optimization in Networked Systems by : Qingguo Lü

Download or read book Distributed Optimization in Networked Systems written by Qingguo Lü and published by Springer Nature. This book was released on 2023-02-08 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on improving the performance (convergence rate, communication efficiency, computational efficiency, etc.) of algorithms in the context of distributed optimization in networked systems and their successful application to real-world applications (smart grids and online learning). Readers may be particularly interested in the sections on consensus protocols, optimization skills, accelerated mechanisms, event-triggered strategies, variance-reduction communication techniques, etc., in connection with distributed optimization in various networked systems. This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike.

First-order and Stochastic Optimization Methods for Machine Learning

Download First-order and Stochastic Optimization Methods for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030395685
Total Pages : 591 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Machine Learning Bookcamp

Download Machine Learning Bookcamp PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296813
Total Pages : 470 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Bookcamp by : Alexey Grigorev

Download or read book Machine Learning Bookcamp written by Alexey Grigorev and published by Simon and Schuster. This book was released on 2021-11-23 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.

First-Order Methods in Optimization

Download First-Order Methods in Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974984
Total Pages : 476 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis First-Order Methods in Optimization by : Amir Beck

Download or read book First-Order Methods in Optimization written by Amir Beck and published by SIAM. This book was released on 2017-10-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.