Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Discovering Data Mining
Download Discovering Data Mining full books in PDF, epub, and Kindle. Read online Discovering Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advances in Knowledge Discovery and Data Mining by : Usama M. Fayyad
Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.
Book Synopsis Discovering Data Mining by : Peter Cabena
Download or read book Discovering Data Mining written by Peter Cabena and published by . This book was released on 1998 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through extensive case studies and examples, this book provides practical guidance on all aspects of implementing data mining: technical, business, and social. The book also demonstrates IBM's powerful new intelligent Miner tool and shows how it can be applied.
Download or read book Data Mining written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Book Synopsis Knowledge Discovery and Data Mining by : O. Maimon
Download or read book Knowledge Discovery and Data Mining written by O. Maimon and published by Springer Science & Business Media. This book was released on 2000-12-31 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).
Book Synopsis Feature Selection for Knowledge Discovery and Data Mining by : Huan Liu
Download or read book Feature Selection for Knowledge Discovery and Data Mining written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.
Book Synopsis Data Mining Methods for Knowledge Discovery by : Krzysztof J. Cios
Download or read book Data Mining Methods for Knowledge Discovery written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.
Book Synopsis Discovering Knowledge in Data by : Daniel T. Larose
Download or read book Discovering Knowledge in Data written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2005-01-28 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.
Book Synopsis Temporal Data Mining by : Theophano Mitsa
Download or read book Temporal Data Mining written by Theophano Mitsa and published by CRC Press. This book was released on 2010-03-10 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Book Synopsis Knowledge Discovery from Data Streams by : Joao Gama
Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents
Book Synopsis Magnetic Bubble Technology by : A. H. Eschenfelder
Download or read book Magnetic Bubble Technology written by A. H. Eschenfelder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic bubbles are of interest to engineers because their properties can be used for important practical electronic devices and they are of interest to physicists because their properties are manifestations of intriguing physical principles. At the same time, the fabrication of useful configurations challenges the materials scientists and engineers. A technology of magnetic bubbles has developed to the point where commercial products are being marketed. In addition, new discovery and development are driving this technology toward substantially lower costs and presumably broader application. For all of these reasons there is a need to educate newcomers to this field in universities and in industry. The purpose of this book is to provide a text for a one-semester course that can be taught under headings of Solid State Physics, Materials Science, Computer Technology or Integrated Electronics. It is expected that the student of anyone of these disciplines will be interested in each of the chapters of this book to some degree, but may concentrate on some more than others, depending on the discipline. At the end of each chapter there is a brief summary which will serve as a reminder of the contents of the chapter but can also be read ahead of time to determine the depth of your interest in the chapter.
Book Synopsis Next Generation of Data Mining by : Hillol Kargupta
Download or read book Next Generation of Data Mining written by Hillol Kargupta and published by CRC Press. This book was released on 2008-12-24 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawn from the US National Science Foundation's Symposium on Next Generation of Data Mining and Cyber-Enabled Discovery for Innovation (NGDM 07), Next Generation of Data Mining explores emerging technologies and applications in data mining as well as potential challenges faced by the field.Gathering perspectives from top experts across different di
Book Synopsis Knowledge Discovery and Data Mining: Challenges and Realities by : Zhu, Xingquan
Download or read book Knowledge Discovery and Data Mining: Challenges and Realities written by Zhu, Xingquan and published by IGI Global. This book was released on 2007-04-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides a focal point for research and real-world data mining practitioners that advance knowledge discovery from low-quality data; it presents in-depth experiences and methodologies, providing theoretical and empirical guidance to users who have suffered from underlying low-quality data. Contributions also focus on interdisciplinary collaborations among data quality, data processing, data mining, data privacy, and data sharing"--Provided by publisher.
Book Synopsis Scientific Data Mining and Knowledge Discovery by : Mohamed Medhat Gaber
Download or read book Scientific Data Mining and Knowledge Discovery written by Mohamed Medhat Gaber and published by Springer Science & Business Media. This book was released on 2009-09-19 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Book Synopsis Geographic Data Mining and Knowledge Discovery by : Harvey J. Miller
Download or read book Geographic Data Mining and Knowledge Discovery written by Harvey J. Miller and published by CRC Press. This book was released on 2001-10-11 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.
Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas
Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Download or read book Urban Informatics written by Wenzhong Shi and published by Springer Nature. This book was released on 2021-04-06 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
Book Synopsis Soft Computing for Knowledge Discovery and Data Mining by : Oded Maimon
Download or read book Soft Computing for Knowledge Discovery and Data Mining written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2007-10-25 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.