Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Directions In Partial Differential Equations
Download Directions In Partial Differential Equations full books in PDF, epub, and Kindle. Read online Directions In Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Directions in Partial Differential Equations by : Michael G. Crandall
Download or read book Directions in Partial Differential Equations written by Michael G. Crandall and published by Academic Press. This book was released on 2014-05-10 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Directions in Partial Differential Equations covers the proceedings of the 1985 Symposium by the same title, conducted by the Mathematics Research Center, held at the University of Wisconsin, Madison. This book is composed of 13 chapters and begins with reviews of the calculus of variations and differential geometry. The subsequent chapters deal with the study of development of singularities, regularity theory, hydrodynamics, mathematical physics, asymptotic behavior, and critical point theory. Other chapters discuss the use of probabilistic methods, the modern theory of Hamilton-Jacobi equations, the interaction between theory and numerical methods for partial differential equations. The remaining chapters explore attempts to understand oscillatory phenomena in solutions of nonlinear equations. This book will be of great value to mathematicians and engineers.
Book Synopsis Partial Differential Equations by : Lawrence C. Evans
Download or read book Partial Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.
Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood
Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.
Book Synopsis Partial Differential Equations by : Michael Shearer
Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou
Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Book Synopsis High-Dimensional Partial Differential Equations in Science and Engineering by : André D. Bandrauk
Download or read book High-Dimensional Partial Differential Equations in Science and Engineering written by André D. Bandrauk and published by American Mathematical Soc.. This book was released on 2007 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-dimensional spatio-temporal partial differential equations are a major challenge to scientific computing of the future. Up to now deemed prohibitive, they have recently become manageable by combining recent developments in numerical techniques, appropriate computer implementations, and the use of computers with parallel and even massively parallel architectures. This opens new perspectives in many fields of applications. Kinetic plasma physics equations, the many body Schrodinger equation, Dirac and Maxwell equations for molecular electronic structures and nuclear dynamic computations, options pricing equations in mathematical finance, as well as Fokker-Planck and fluid dynamics equations for complex fluids, are examples of equations that can now be handled. The objective of this volume is to bring together contributions by experts of international stature in that broad spectrum of areas to confront their approaches and possibly bring out common problem formulations and research directions in the numerical solutions of high-dimensional partial differential equations in various fields of science and engineering with special emphasis on chemistry and physics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
Book Synopsis Cohomological Analysis of Partial Differential Equations and Secondary Calculus by : A. M. Vinogradov
Download or read book Cohomological Analysis of Partial Differential Equations and Secondary Calculus written by A. M. Vinogradov and published by American Mathematical Soc.. This book was released on 2001-10-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".
Book Synopsis Partial Differential Equations by : A. V. Bitsadze
Download or read book Partial Differential Equations written by A. V. Bitsadze and published by World Scientific. This book was released on 1994 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook in partial differential equations has been adopted as course material by the Moscow State University. The theoretical foundations of PDE are explained rigorously and clearly in such a way that their importance on applications is also taken into account. The presentation of materials has been arranged to be conducive to promoting students' interest in mathematical experiments.
Book Synopsis Multivariable Calculus with Applications by : Peter D. Lax
Download or read book Multivariable Calculus with Applications written by Peter D. Lax and published by Springer. This book was released on 2018-03-12 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.
Book Synopsis Exterior Differential Systems by : Robert L. Bryant
Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Book Synopsis Partial Differential Equations by : F. John
Download or read book Partial Differential Equations written by F. John and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book has been completely rewritten for this new edition. While most of the material found in the earlier editions has been retained, though in changed form, there are considerable additions, in which extensive use is made of Fourier transform techniques, Hilbert space, and finite difference methods. A condensed version of the present work was presented in a series of lectures as part of the Tata Institute of Fundamental Research -Indian Insti tute of Science Mathematics Programme in Bangalore in 1977. I am indebted to Professor K. G. Ramanathan for the opportunity to participate in this excit ing educational venture, and to Professor K. Balagangadharan for his ever ready help and advice and many stimulating discussions. Very special thanks are due to N. Sivaramakrishnan and R. Mythili, who ably and cheerfully prepared notes of my lectures which I was able to use as the nucleus of the present edition. A word about the choice of material. The constraints imposed by a partial differential equation on its solutions (like those imposed by the environment on a living organism) have an infinite variety of con sequences, local and global, identities and inequalities. Theories of such equations usually attempt to analyse the structure of individual solutions and of the whole manifold of solutions by testing the compatibility of the differential equation with various types of additional constraints.
Book Synopsis A Course on Partial Differential Equations by : Walter Craig
Download or read book A Course on Partial Differential Equations written by Walter Craig and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrödinger equation, nonlinear hyperbolic conservation laws, and shock waves. The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.
Book Synopsis Boundary Control of PDEs by : Miroslav Krstic
Download or read book Boundary Control of PDEs written by Miroslav Krstic and published by SIAM. This book was released on 2008-01-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Book Synopsis Partial Differential Equations by : Bhamra
Download or read book Partial Differential Equations written by Bhamra and published by PHI Learning Pvt. Ltd.. This book was released on 2010-01-30 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: and postgraduate (MA/MSc) students of mathematics, and conforms to the course curriculum prescribed by UGC. The text is broadly organized into two parts. The first part (Lessons 1 to 15) mostly covers the first-order equations in two variables. In these lessons, the mathematical importance of PDEs of first order in physics and applied sciences has also been highlighted. The other part (Lessons 16 to 50) deals with the various properties of second-order and first- order PDEs. The book emphasizes the applications of PDEs and covers various important topics such as the Hamilton Jacobi equation, Conservation laws, Similarity solution, Asymptotics and Power series solution and many more. The graded problems, the techniques for solving them, and a large number of exercises with hints and answers help students gain the necessary skill and confidence in handling the subject.
Book Synopsis Introduction to Partial Differential Equations by : Aslak Tveito
Download or read book Introduction to Partial Differential Equations written by Aslak Tveito and published by Springer Science & Business Media. This book was released on 2008-01-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.