Difference Methods for Solutions of Problems of Mathematical Physics. I

Download Difference Methods for Solutions of Problems of Mathematical Physics. I PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821818749
Total Pages : 204 pages
Book Rating : 4.8/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Difference Methods for Solutions of Problems of Mathematical Physics. I by : Nikolaĭ Nikolaevich I︠A︡nenko

Download or read book Difference Methods for Solutions of Problems of Mathematical Physics. I written by Nikolaĭ Nikolaevich I︠A︡nenko and published by American Mathematical Soc.. This book was released on 1967 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Methods in Physics

Download Mathematical Methods in Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439865167
Total Pages : 859 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods in Physics by : Victor Henner

Download or read book Mathematical Methods in Physics written by Victor Henner and published by CRC Press. This book was released on 2009-06-18 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that

A Course in Modern Mathematical Physics

Download A Course in Modern Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521829601
Total Pages : 620 pages
Book Rating : 4.8/5 (296 download)

DOWNLOAD NOW!


Book Synopsis A Course in Modern Mathematical Physics by : Peter Szekeres

Download or read book A Course in Modern Mathematical Physics written by Peter Szekeres and published by Cambridge University Press. This book was released on 2004-12-16 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.

Mathematical Physics with Partial Differential Equations

Download Mathematical Physics with Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123869110
Total Pages : 431 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Download Kernel Functions and Elliptic Differential Equations in Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486445534
Total Pages : 450 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Kernel Functions and Elliptic Differential Equations in Mathematical Physics by : Stefan Bergman

Download or read book Kernel Functions and Elliptic Differential Equations in Mathematical Physics written by Stefan Bergman and published by Courier Corporation. This book was released on 2005-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

Mathematical Physics

Download Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387985794
Total Pages : 1052 pages
Book Rating : 4.9/5 (857 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics by : Sadri Hassani

Download or read book Mathematical Physics written by Sadri Hassani and published by Springer Science & Business Media. This book was released on 2002-02-08 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt: For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.

Difference Methods of Solving Problems of Mathematical Physics. II

Download Difference Methods of Solving Problems of Mathematical Physics. II PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821830222
Total Pages : 106 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Difference Methods of Solving Problems of Mathematical Physics. II by : Nikolaĭ Nikolaevich I︠A︡nenko

Download or read book Difference Methods of Solving Problems of Mathematical Physics. II written by Nikolaĭ Nikolaevich I︠A︡nenko and published by American Mathematical Soc.. This book was released on 1970 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses solving difference equations in physics.

The Theory of Difference Schemes

Download The Theory of Difference Schemes PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780203908518
Total Pages : 796 pages
Book Rating : 4.9/5 (85 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Difference Schemes by : Alexander A. Samarskii

Download or read book The Theory of Difference Schemes written by Alexander A. Samarskii and published by CRC Press. This book was released on 2001-03-29 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Difference Schemes emphasizes solutions to boundary value problems through multiple difference schemes. It addresses the construction of approximate numerical methods and computer algorithms for solving mathematical physics problems. The book also develops mathematical models for obtaining desired solutions in minimal time using direct or iterative difference equations. Mathematical Reviews said it is "well-written [and] an excellent book, with a wealth of mathematical material and techniques."

Mathematical Physics

Download Mathematical Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030396800
Total Pages : 790 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics by : V. Balakrishnan

Download or read book Mathematical Physics written by V. Balakrishnan and published by Springer Nature. This book was released on 2020-04-07 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at advanced undergraduate and graduate students interested in learning the fundamental mathematical concepts and tools widely used in different areas of physics. The author draws on a vast teaching experience, and presents a comprehensive and self-contained text which explains how mathematics intertwines with and forms an integral part of physics in numerous instances. Rather than emphasizing rigorous proofs of theorems, specific examples and physical applications (such as fluid dynamics, electromagnetism, quantum mechanics, etc.) are invoked to illustrate and elaborate upon the relevant mathematical techniques. The early chapters of the book introduce different types of functions, vectors and tensors, vector calculus, and matrices. In the subsequent chapters, more advanced topics like linear spaces, operator algebras, special functions, probability distributions, stochastic processes, analytic functions, Fourier series and integrals, Laplace transforms, Green's functions and integral equations are discussed. The book also features about 400 exercises and solved problems interspersed throughout the text at appropriate junctures, to facilitate the logical flow and to test the key concepts. Overall this book will be a valuable resource for a wide spectrum of students and instructors of mathematical physics.

The Method of Fractional Steps

Download The Method of Fractional Steps PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642651089
Total Pages : 169 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis The Method of Fractional Steps by : Nikolaj N. Yanenko

Download or read book The Method of Fractional Steps written by Nikolaj N. Yanenko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs.

Partial Differential Equations of Mathematical Physics

Download Partial Differential Equations of Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486659640
Total Pages : 452 pages
Book Rating : 4.6/5 (596 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Mathematical Methods

Download Mathematical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038721562X
Total Pages : 673 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods by : Sadri Hassani

Download or read book Mathematical Methods written by Sadri Hassani and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Download Numerical Methods for Solving Inverse Problems of Mathematical Physics PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110205793
Total Pages : 453 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Solving Inverse Problems of Mathematical Physics by : A. A. Samarskii

Download or read book Numerical Methods for Solving Inverse Problems of Mathematical Physics written by A. A. Samarskii and published by Walter de Gruyter. This book was released on 2008-08-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

A First Course in Wavelets with Fourier Analysis

Download A First Course in Wavelets with Fourier Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118211154
Total Pages : 248 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Wavelets with Fourier Analysis by : Albert Boggess

Download or read book A First Course in Wavelets with Fourier Analysis written by Albert Boggess and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.

Analytical Solution Methods for Boundary Value Problems

Download Analytical Solution Methods for Boundary Value Problems PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128043636
Total Pages : 202 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Analytical Solution Methods for Boundary Value Problems by : A.S. Yakimov

Download or read book Analytical Solution Methods for Boundary Value Problems written by A.S. Yakimov and published by Academic Press. This book was released on 2016-08-13 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. - Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers - Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series - Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation - Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies - Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Mathematical Methods For Physics

Download Mathematical Methods For Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429978642
Total Pages : 395 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods For Physics by : H. W. Wyld

Download or read book Mathematical Methods For Physics written by H. W. Wyld and published by CRC Press. This book was released on 2018-03-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.

The Boundary Value Problems of Mathematical Physics

Download The Boundary Value Problems of Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475743173
Total Pages : 350 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis The Boundary Value Problems of Mathematical Physics by : O.A. Ladyzhenskaya

Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.