Development of Terahertz Systems Using Quantum Cascade Lasers and Photomixers

Download Development of Terahertz Systems Using Quantum Cascade Lasers and Photomixers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (118 download)

DOWNLOAD NOW!


Book Synopsis Development of Terahertz Systems Using Quantum Cascade Lasers and Photomixers by : Siddhant Chowdhury

Download or read book Development of Terahertz Systems Using Quantum Cascade Lasers and Photomixers written by Siddhant Chowdhury and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spectroscopic Applications of Terahertz Quantum-Cascade Lasers

Download Spectroscopic Applications of Terahertz Quantum-Cascade Lasers PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736962975
Total Pages : 132 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Spectroscopic Applications of Terahertz Quantum-Cascade Lasers by : Tasmim Alam

Download or read book Spectroscopic Applications of Terahertz Quantum-Cascade Lasers written by Tasmim Alam and published by Cuvillier Verlag. This book was released on 2020-10-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Magneto-spectroscopy and Development of Terahertz Quantum Cascade Lasers

Download Magneto-spectroscopy and Development of Terahertz Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Magneto-spectroscopy and Development of Terahertz Quantum Cascade Lasers by :

Download or read book Magneto-spectroscopy and Development of Terahertz Quantum Cascade Lasers written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work we concentrate our efforts on the generation of laser emission at low THz frequencies (3-1 THz range) employing the quantum cascade technology. Quantum cascade (QC) lasers are unipolar semiconductor lasers based on intersubband transitions in quantum wells that cover a large portion of the Mid and Far Infrared electromagnetic spectrum. Two main research lines have been followed: (i) the development of quantum cascade lasers based on population inversion between parabolic subbands and (ii) the development of low frequency QC lasers based on a three-dimensional electron confinement induced by an external magnetic field. (i) : Gain and laser action have been demonstrated in different systems at frequencies of 3.4 3.6 THz exploiting bound-to-bound and bound-to-continuum optical transition. A QC laser emitting at 3.6 THz and based on a vertical transition and resonant tunneling in a single quantum well has been demonstrated. To overcome the limitations in performance of such a system, an heterostructure laser based on a bound-to-continuum transition has been developed. The structure was the first one to operate above the technologically important temperature of liquid nitrogen. With a further development of the bound-to-continuum design that includes lower state lifetime reduction by optical phonon emission, laser action was successfully achieved at 115 K.A study of different waveguide mechanisms suitable for different THz frequencies has also been carried out. (ii) : THz quantum cascade lasers based on the in-plane confinement introduced by a strong magnetic field applied perpendiculary to the plane of the layers have been developed. A model system based on large single quantum wells (50-60 nm wide) has been exploited to study this gain mechanism. Such an approach led to the extension of the frequency range of operation of QC lasers, with the demonstration of laser action at 1.39 THz (220 mm) which is the lowest frequency observed to-date for this kind of.

Handbook of Terahertz Technology for Imaging, Sensing and Communications

Download Handbook of Terahertz Technology for Imaging, Sensing and Communications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0857096494
Total Pages : 684 pages
Book Rating : 4.8/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Terahertz Technology for Imaging, Sensing and Communications by : D Saeedkia

Download or read book Handbook of Terahertz Technology for Imaging, Sensing and Communications written by D Saeedkia and published by Elsevier. This book was released on 2013-01-16 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent development of easy-to-use sources and detectors of terahertz radiation has enabled growth in applications of terahertz (Thz) imaging and sensing. This vastly adaptable technology offers great potential across a wide range of areas, and the Handbook of terahertz technology for imaging, sensing and communications explores the fundamental principles, important developments and key applications emerging in this exciting field. Part one provides an authoritative introduction to the fundamentals of terahertz technology for imaging, sensing and communications. The generation, detection and emission of waves are discussed alongside fundamental aspects of surface plasmon polaritons, terahertz near-field imaging and sensing, room temperature terahertz detectors and terahertz wireless communications. Part two goes on to discuss recent progress and such novel techniques in terahertz technology as terahertz bio-sensing, array imagers, and resonant field enhancement of terahertz waves. Fiber-coupled time-domain spectroscopy systems (THz-TDS), terahertz photomixer systems, terahertz nanotechnology, frequency metrology and semiconductor material development for terahertz applications are all reviewed. Finally, applications of terahertz technology are explored in part three, including applications in tomographic imaging and material spectroscopy, art conservation, and the aerospace, wood products, semiconductor and pharmaceutical industries. With its distinguished editor and international team of expert contributors, the Handbook of terahertz technology for imaging, sensing and communications is an authoritative guide to the field for laser engineers, manufacturers of sensing devices and imaging equipment, security companies, the military, professionals working in process monitoring, and academics interested in this field. Examines techniques for the generation and detection of terahertz waves Discusses material development for terahertz applications Explores applications in tomographic imaging, art conservation and the pharmaceutical and aerospace industries

Terahertz Technology

Download Terahertz Technology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642157939
Total Pages : 256 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Terahertz Technology by : Ali Rostami

Download or read book Terahertz Technology written by Ali Rostami and published by Springer Science & Business Media. This book was released on 2010-11-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents information about Terahertz science, Terahertz photodetectors and Terahertz Lasers. A special emphasis is given to room temperature operation of long wavelength photodetectors based on novel quantum dots (Centered Defect Spherical Quantum Dots). Moreover, a complete analysis of systems based on Quantum Cascade structures to detect far infrared wavelengths is provided. Finally, the book presents Terahertz laser principles considering multi-color lasers in this range of wavelengths. Written as a background for graduate students in the Optics field.

Physics and Applications of Terahertz Radiation

Download Physics and Applications of Terahertz Radiation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9400738374
Total Pages : 257 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Physics and Applications of Terahertz Radiation by : Matteo Perenzoni

Download or read book Physics and Applications of Terahertz Radiation written by Matteo Perenzoni and published by Springer. This book was released on 2013-10-16 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the latest advances in the techniques employed to manage the THz radiation and its potential uses. It has been subdivided in three sections: THz Detectors, THz Sources, Systems and Applications. These three sections will allow the reader to be introduced in a logical way to the physics problems of sensing and generation of the terahertz radiation, the implementation of these devices into systems including other components and finally the exploitation of the equipment for real applications in some different field. All of the sections and chapters can be individually addressed in order to deepen the understanding of a single topic without the need to read the whole book. The THz Detectors section will address the latest developments in detection devices based on three different physical principles: photodetection, thermal power detection, rectification. The THz Sources section will describe three completely different generation methods, operating in three separate scales: quantum cascade lasers, free electron lasers and non-linear optical generation. The Systems and Applications section will take care of introducing many of the aspects needed to move from a device to an equipment perspective: control of terahertz radiation, its use in imaging or in spectroscopy, potential uses in security, and will address also safety issues. The text book is at a level appropriate to graduate level courses up to researchers in the field who require a reference book covering all aspects of terahertz technology.

Development of Terahertz QCLs

Download Development of Terahertz QCLs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 340 pages
Book Rating : 4.:/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Development of Terahertz QCLs by : Sushil Kumar (Ph. D.)

Download or read book Development of Terahertz QCLs written by Sushil Kumar (Ph. D.) and published by . This book was released on 2007 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The terahertz or the far-infrared frequency range of the electromagnetic spectrum (...) has historically been technologically underdeveloped despite having many potential applications, primarily due to lack of suitable sources of coherent radiation. Following on the remarkable development of mid-infrared (...) quantum-cascade lasers (QCLs) in the past decade, this thesis describes the development of electrically-pumped terahertz quantum-cascade lasers in GaAs/AlsGal_. As heterostructures that span a spectral range of 1.59 - 5.0 THz (...). A quantum-cascade laser (QCL) emits photons due to electronic intersubband transitions in the quantum-wells of a semiconductor heterostructure. The operation of terahertz QCLs at frequencies below the Reststrahlen band in the semiconductor (...), is significantly more challenging as compared to that of the mid-infrared QCLs. Firstly, due to small energy separation between the laser levels various intersubband scattering mechanisms are activated, which make it difficult to selectively depopulate the lower laser level. Additionally, as electrons gain enough kinetic energy in the upper laser level thermally activated longitudinal-optical (LO) phonon scattering reduces the level lifetime and makes it difficult to sustain population inversion at higher temperatures. Secondly, waveguide design for terahertz mode confinement is also more challenging due to higher free-carrier losses in the semiconducting doped regions at the terahertz frequencies. For successful designs reported in this work, the lower radiative state depopulation is achieved by a combination of resonant-tunneling and fast LO phonon scattering, which allow robust operation even at relatively high temperatures. An equally important enabling mechanism for these lasers is the development of metal-metal waveguides, which provide low waveguides losses, and strong mode confinement due to subwavelength mode localization in the vertical dimension. With these techniques some record performances for terahertz QCLs are demonstrated including the highest pulsed operating temperature of 169 K, the highest continuous-wave (cw) operating temperature of 117 K, and the highest optical power output (248 mW in pulsed and 138 mW in cw at 5 K) for any terahertz QCL. Towards the bigger goal of realizing a 1-THz solid-state laser to ultimately bridge the gap between electronic and optical sources of electromagnetic radiation, QCLs with a unique one-well injection scheme, which minimizes intersubband absorption losses that occur at longer wavelengths, are developed. Based on this scheme a QCL operating at 1.59 THz (A - 189 ym) is realized, which is amongst the lowest frequency solid-state lasers that operate without the assistance of a magnetic field. This thesis also reports on the development of distributed-feedback lasers in metal-metal waveguides to obtain single-mode operation, with greater output power and better beam quality. The subwavelength vertical dimension in these waveguides leads to a strongly coupled DFB action and a large reflection from the end-facets, and thus conventional coupled-mode theory is not directly applicable to the DFB design. A design technique with precise control of phase of reflection at the end-facets is developed with the aid of finite-element analysis, and with some additional unique design and fabrication methods, robust DFB operation has been obtained. Single-mode surface-emitting terahertz QCLs operating up to - 150 K are demonstrated, with different grating devices spanning a range of approximately 0.35 THz around v - 3 THz using the same gain medium. A single-lobed far-field radiation pattern, higher output power due to surface-emission, and a relatively small degradation in temperature performance compared to the Fabry-Perot ridge lasers makes these DFB lasers well suited for practical applications that are being targeted by the terahertz quantum-cascade lasers.

Terahertz Generation with Quantum Cascade Lasers

Download Terahertz Generation with Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 226 pages
Book Rating : 4.:/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Terahertz Generation with Quantum Cascade Lasers by : Karun Vijayraghavan

Download or read book Terahertz Generation with Quantum Cascade Lasers written by Karun Vijayraghavan and published by . This book was released on 2014 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The terahertz (THz) spectral range is devoid of commercially feasible radiation sources, detectors, and components. In particular, THz sources are bulky, complex to operate, and cost-prohibitive - more suited for a research laboratory than a commercial setting. Developing compact and mass-producible sources in the 1 to 6 THz spectral range will open up new avenues for this technology to make a mainstream societal impact. The focus of this thesis is the development of compact, room-temperature terahertz sources based on quantum cascade lasers (QCL) and quantum well technology. QCLs are semiconductor lasers that operate with high power at mid-infrared (mid-IR) and THz frequencies. THz QCLs are the only mW-level average power sources with spectral coverage from 0.8 to 5 THz. However they only work at cryogenic temperatures because they cannot maintain population inversion across the lasing transition at elevated temperatures. Cryogenic cooling makes these sources cumbersome to operate and expensive to manufacture. Room-temperature operation significantly enhances their commercial appeal and a portion of this dissertation investigated the improvement in THz QCL temperature performance using GaAs-Al0.15Ga0.85As double-phonon resonant active region designs. These devices worked up to 173 K and were a substantial improvement compared to prior implementations of double-phonon resonant designs. Room-temperature THz sources that do not require population inversion across the lasing transition can be engineered by combining the field of nonlinear optics with intersubband transitions in quantum well structures. One method of creating inversionless THz lasing is based upon the principle of Raman gain in semiconductors and this thesis explores the design of an intersubband Raman laser (IRL) with GaAs-Al0.33Ga0.67As heterostructures. The primary focus of this dissertation is developing room-temperature, broadly-tunable, monolithic THz sources based on difference-frequency generation (DFG) in mid-IR QCLs. The source active region is quantum-engineered to provide lasing at mid-IR frequencies, [omega]1 and [omega]2, and simultaneously have giant second-order optical nonlinearity for THz generation at frequency [omega] [subscript THz]=[omega]1-[omega]2. This dissertation developed a Cherenkov emission scheme that produced devices with a narrow emission linewidth, 0.12 mW peak power and tuning from 1.55 to 5.7 THz - the largest tuning bandwidth compared to semiconductor technology of similar size and cost.

Mid-Infrared and Terahertz Quantum Cascade Lasers

Download Mid-Infrared and Terahertz Quantum Cascade Lasers PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108570607
Total Pages : 552 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mid-Infrared and Terahertz Quantum Cascade Lasers by : Dan Botez

Download or read book Mid-Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-09-14 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

The Development and Applications of Terahertz Quantum Cascade Lasers

Download The Development and Applications of Terahertz Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (885 download)

DOWNLOAD NOW!


Book Synopsis The Development and Applications of Terahertz Quantum Cascade Lasers by : Raed Hussain S. Alhathlool

Download or read book The Development and Applications of Terahertz Quantum Cascade Lasers written by Raed Hussain S. Alhathlool and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Development of Terahertz Quantum-cascade Lasers as Sources for Heterodyne Receivers

Download Development of Terahertz Quantum-cascade Lasers as Sources for Heterodyne Receivers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 214 pages
Book Rating : 4.:/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Development of Terahertz Quantum-cascade Lasers as Sources for Heterodyne Receivers by : Martin Wienold

Download or read book Development of Terahertz Quantum-cascade Lasers as Sources for Heterodyne Receivers written by Martin Wienold and published by . This book was released on 2012 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Development of Tunable Terahertz Quantum Cascade Wire Lasers

Download Development of Tunable Terahertz Quantum Cascade Wire Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 188 pages
Book Rating : 4.:/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Development of Tunable Terahertz Quantum Cascade Wire Lasers by : Qi Qin (Ph. D.)

Download or read book Development of Tunable Terahertz Quantum Cascade Wire Lasers written by Qi Qin (Ph. D.) and published by . This book was released on 2012 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time, terahertz (THz) radiation has been of great interest to scientific community because of its spectroscopic and imaging applications based on its unique properties, such as the capabilities to penetrate many materials which are opaque in other frequency range (e.g. packaging, plastics, paints and semiconductors), and spectroscopic signatures of many important materials. In this thesis, a continuously tunable THz wire QC laser, which comprises a QC laser with deep sub-wavelength transverse dimensions, and a movable side object, termed as "plunger", is demonstrated. This deep sub-wavelength cross-section results in a large fraction of mode propagating outside of the laser core (GaAs/A10.15Ga0.85As material system). The frequency tuning is achieved by changing the transverse wave vector, using a plunger made by metal (metal plunger) or silicon (dielectric plunger). When nudged close to the wire laser core, the metal plunger can push modes to the opposite side of the waveguide. Confined by a metal-metal waveguide, the mode is squeezed and the transverse wave vector is increased, resulting in a blue-shifted frequency. In contrast, a silicon plunger can suck the mode out due to its similar refractive index to GaAs/Al0.15Ga0.85As material system of laser core. Thus a decreased transverse wave vector results in a redshifted frequency. Although a tuning record of 138GHz (3.6%) was achieved, a discontinuous tuning resulted from a jittering movement of the plungers due to its friction with the guiding system. To solve this problem, an improved plunger based on micro-mechanical system (MEMS) was implemented. This MEMS plunger uses a two-stage folded-beam flexure to isolate the misaligned external actuation. The plunger is attached with the flexure which suspends above a silicon substrate to eliminate friction. Eventually, this MEMS flexure was actuated by a mechanical system which comprised a lever to de-amplify the displacement of a linear mechanical feedthrough. This MEMS plunger enabled a restorable and frictionless movement which led to a continuous tuning range of 330GHz (8.6%) centered at ~3.85 THz. The challenges posted by the weak mode discrimination led to the development of comb-shape connectors which electrically connect the top metal of wire lasers and the side bonding pad. This design can significantly increase the mode discrimination by selectively guiding undesired mode into the lossy bonding pad. This robust design of single mode operation enables the initial lasing at a frequency far below the gain peak, which can potentially increase the tuning range significantly.

Development of Terahertz Frequency Quantum Cascade Lasers

Download Development of Terahertz Frequency Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 344 pages
Book Rating : 4.:/5 (784 download)

DOWNLOAD NOW!


Book Synopsis Development of Terahertz Frequency Quantum Cascade Lasers by : Mohammed Salih

Download or read book Development of Terahertz Frequency Quantum Cascade Lasers written by Mohammed Salih and published by . This book was released on 2011 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers

Download Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 223 pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers by : Benjamin Adams Burnett

Download or read book Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers written by Benjamin Adams Burnett and published by . This book was released on 2016 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The portion of the electromagnetic spectrum between roughly 300 GHz and 10 THz is nicknamed the "THz Gap" because of the enormous difficulty encountered by researchers to devise practical sources covering it. Still, the quantum cascade laser (QCL) has emerged over recent years as the most promising approach to a practical source in the 1-5 THz range. First developed in the higher-frequency mid-IR, where they are now widely available, QCLs were later extended to the THz where a host of greater design challenges awaited. Lasing in QCLs is based on intersubband optical transitions in semiconductor quantum wells, the energy of which can be chosen by design ("bandstructure engineering"). However, simply building a THz optical transition is insufficient; a good design must also produce significant population inversion by the applied cascading electron current, and this requires deep understanding of the transport physics. So far, no THz QCL has operated above the temperature of 200 K, even though the reasons prohibiting high temperature operation are well known. The goal of this Thesis is to put novel ideas for high-temperature operation of THz QCL active regions through rigorous theoretical testing. The central enabling development is a density-matrix-based model of transport and optical properties tailored for use in QCLs, which is general enough that widely varying design concepts can be tested using the same core principles. Importantly, by simulating QCLs more generally, fewer a priori assumptions are required on part of the researcher, allowing for the true physics to emerge on its own. It will be shown that this gives rise to new and useful insights that will help to guide the experimental efforts towards realization of these devices. One specific application is a quantum dot cascade laser (QDCL), a highly ambitious approach in which the electrons cascade through a series of quantum dots rather than wells. Benefits are expected due to the suppression of nonradiative scattering, brought about by the discrete spectrum of electronic states. However, this in turn leads to a highly different physics of transport and effects that are not well understood, even in the case of perfect materials. This work will show that while the benefits are clear, naive scaling of existing QCL designs to the quantum dot limit will not work. An alternative strategy is given based on a revised understanding of the nature of transport, and is put to a test of practicality in which the effects of quantum dot size inhomogeneity are estimated. Another application is to the already existing method of THz difference frequency generation in mid-IR QCLs, which occurs via a difference-frequency susceptibility $\chi^{(2)}$ in the active region itself. For this purpose, the model is extended to enable a coherent and nonperturbative calculation of optical nonlinearities. First, the generality of the method is displayed through the emergence of exotic nonlinear effects, including electromagnetically-induced transparency, in mock quantum-well systems. Then, the modeling concepts are applied to the real devices, where two new and important mechanisms contributing to $\chi^{(2)}$ are identified. Most importantly, it is predicted that the QCL acts as an extremely fast photodetector of itself, giving rise to a current response to the mid-IR beatnote that provides a better path forward to the generation of frequencies below ~2 THz. Finally, the fundamentals of density matrix transport theory for QCLs are revisited to develop a model for conventional THz QCL designs eliminating the usual phenomenological treatment of scattering. The new theory is fully developed from first principles, and in particular sheds light on the effects of scattering-induced electron localization. The versatility of the model is demonstrated by successful simulation of varying active region designs.

Development of Terahertz Quantum-cascade VECSELs

Download Development of Terahertz Quantum-cascade VECSELs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 184 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Development of Terahertz Quantum-cascade VECSELs by : Christopher Curwen

Download or read book Development of Terahertz Quantum-cascade VECSELs written by Christopher Curwen and published by . This book was released on 2019 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Terahertz (THz) quantum-cascade lasers (QCLs) are an emerging semiconductor source of compact, high-power THz radiation. Though first realized more than 15 years ago, THz QCLs continue to suffer from poor beam quality and outcoupling efficiency due to the subwavelength nature of the semiconductor ridge-waveguides typically used. In this thesis, a new technique is discussed for obtaining high power and good beam quality from THz QCLs, the THz quantum-cascade external cavity surface emitting laser (QC-VECSEL). The concept of the QC-VECSEL is to use THz QC-gain material to design a millimeter-scale reflective amplifying surface, or metasurface, for free space THz waves and incorporate it into a free-space THz resonant cavity to provide feedback to the amplification and form a laser. In this manner, the beam shape is determined by the external cavity, which supports fundamental Gaussian solutions. Further, the metasurface itself is composed of a subwavelength array (to prevent diffraction) of surface-coupled QC-elements whose properties, such as phase and polarization response, can be engineered on a unit cell basis allowing for a variety of unique experiments. The power output power of the QC-VECSEL can be scaled by either increasing the size of the metasurface, or increasing the density (or fill factor) of QC-elements across the surface. In this work, large area metasurfaces with high fill-factor have been studied and demonstrated up to 1.35 W of peak output power for a QC-VECSEL operating at 3.4 THz at a heat sink temperature of 4 K. A peak wall-plug efficiency of ~2% is demonstrated, but observation of self lasing from the metasurface at high bias (when no external cavity is provided) in combination with a simultaneous roll-off in VECSEL output power suggests even higher efficiency can be achieved with improved suppression of self-lasing modes. The output beam is well fit to a Gaussian distribution with a 4 degree full-width half-maximum divergence angle. In addition to power and beam quality, the QC-VECSEL opens the door to many interesting and unique studies via engineering of the metasurface properties and external cavity. Much of this thesis describes frequency tuning of QC-VECSELs based on broadband metasurfaces by varying the length of the external cavity. By making the external cavity extremely short (comparable to the operating wavelength), we are able to push all other external cavity modes outside of the gain bandwidth of the metasurface and demonstrate more than 20% fractional single-mode tuning around a center operating frequency of 3.5 THz. Because there are almost no diffraction losses at such a short cavity, the size of the metasurface could be reduced, allowing for continuous wave lasing with up to 20 milliwatts of output power at a heatsink temperature of 77 K, though the output power is highly variable as the reflectance of the output coupler has a strong frequency dependence. At the time of writing this, these are record performances in both frequency tuning and high-temperature continuous wave operation for lasers based on THz QC-gain material. The amount of tuning that be achieved with this approach is limited by the phase response of the metasurface, which squeezes the external cavity modes closer together in the spectral domain. Development of metasurfaces with lower electrical power consumption and higher conversion efficiency for the purpose of improving continuous wave performance. A sparse, patch-based metasurface with reduced power consumption is demonstrated, though the design was not optimal and only showed a 20% reduction in current draw compared to the previously demonstrated metasurfaces. Routes towards improving the performance are discussed. The last subject discussed is the design of a mid-infrared (IR) QC-VECSEL. Due to the large metal losses at mid-IR frequencies compared to THz, the technique used to develop THz QC-VECSELs cannot be directly extended to the mid-IR. We propose a scheme based on a diffraction grating to provide surface coupling of the QC-gain material. Progress on experimental realization is discussed, but lasing has not yet been observed.

Electrically Tunable Terahertz Quantum Cascade Lasers

Download Electrically Tunable Terahertz Quantum Cascade Lasers PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 118 pages
Book Rating : 4.:/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Electrically Tunable Terahertz Quantum Cascade Lasers by : Ningren Han

Download or read book Electrically Tunable Terahertz Quantum Cascade Lasers written by Ningren Han and published by . This book was released on 2013 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, microelectromechanical systems (MEMS) assisted electrically tunable terahertz quantum cascade lasers (THz QCLs) are designed and demonstrated. Two MEMS tuner devices are proposed to achieve electrically tunable THz QCLs. One is the electrostatic comb drive actuated tuner design and the other one is a two-stage flexure design that is actuated by an external piezo nano-positioning actuator. The MEMS tuner devices are all fabricated using standard foundry process SOIMUMPs from MEMSCAP Inc. with some additional in-house post-processings. First order distributed-feedback (DFB) THz wire QCLs with robust mode selectors are designed and fabricated at the MIT Microsystems Technology Laboratories (MTL) using processes developed at our group. By integrating the MEMS tuner chips with the THz QCL chips, broadband electrically tunable THz QCLs are successfully demonstrated. This thesis work provides an important step towards realizing turn-key tunable THz coherent sources for a variety of applications such as THz spectroscopy and THz coherent tomography.

Quantum Cascade Lasers

Download Quantum Cascade Lasers PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191663832
Total Pages : 321 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Quantum Cascade Lasers by : Jérôme Faist

Download or read book Quantum Cascade Lasers written by Jérôme Faist and published by OUP Oxford. This book was released on 2013-03-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to quantum cascade lasers, including the basic underlying models used to describe the device. It aims at giving a synthetic view of the topic including the aspects of the physics, the technology, and the use of the device. It should also provide a guide for the application engineer to use this device in systems. The book is based on lecture notes of a class given for Masters and beginning PhD students. The idea is to provide an introduction to the new and exciting developments that intersubband transitions have brought to the use of the mid-infrared and terahertz region of the electromagnetic spectrum. The book provides an introductory part to each topic so that it can be used in a self-contained way, while references to the literature will allow deeper studies for further research.