Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Desarrollo De Aplicaciones Moviles Para Android
Download Desarrollo De Aplicaciones Moviles Para Android full books in PDF, epub, and Kindle. Read online Desarrollo De Aplicaciones Moviles Para Android ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Android Studio Basic Course by : Yessy Arriaga
Download or read book Android Studio Basic Course written by Yessy Arriaga and published by Createspace Independent Publishing Platform. This book was released on 2015-11-28 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn step by step to develop applications for Android mobile devices using Android Studio. 257 pages full color, with theory, exercises and images for easy learning .
Book Synopsis Augmented Reality, Virtual Reality, and Computer Graphics by : Lucio Tommaso De Paolis
Download or read book Augmented Reality, Virtual Reality, and Computer Graphics written by Lucio Tommaso De Paolis and published by Springer. This book was released on 2019-07-27 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2-volume set LNCS 11613 and 11614 constitutes the refereed proceedings of the 6th International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2019, held in Santa Maria al Bagno, Italy, in June 2019. The 32 full papers and 35 short papers presented were carefully reviewed and selected from numerous submissions. The papers discuss key issues, approaches, ideas, open problems, innovative applications and trends in virtual and augmented reality, 3D visualization and computer graphics in the areas of medicine, cultural heritage, arts, education, entertainment, military and industrial applications. They are organized in the following topical sections: virtual reality; medicine; augmented reality; cultural heritage; education; and industry.
Book Synopsis Estrategias tecnológicas para la industria de la hostelería by : Peter D. Nyheim
Download or read book Estrategias tecnológicas para la industria de la hostelería written by Peter D. Nyheim and published by Ediciones Universidad Católica de Salta. This book was released on 2019-10-22 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Los procesos comerciales en la industria de la hostelería, como toda industria en la actualidad, están atravesados por las nuevas tecnologías que aportan rapidez, eficiencia y posibilidad de control al ámbito de la gestión. La industria del turismo, y en especial todo lo relacionado con el hospedaje y la alimentación del viajero, se mueve con una fuerte dinámica, y la rapidez de la respuesta es uno de los aspectos prioritarios junto con la necesidad de lograr la total satisfacción de las demandas tanto de clientes como de proveedores. En todos estos procesos, las tecnologías de la información (TI), los sistemas de información (IS) y los sistemas de gestión de la información (MIS) son la herramienta clave en el éxito de los procesos vinculados tanto en las operaciones diarias como en la planificación. Este libro, dirigido tanto a estudiantes como a profesionales vinculados a la hostelería, es el resultado de una colaboración entre autores que han vivido las situaciones que se plantean en él. Cada capítulo cuenta con entrevistas a líderes de la industria en las que se reconocen casos concretos de aplicación de tecnología en la hostelería. Sin dudas, las nuevas tecnologías ofrecen un mayor número de oportunidades tanto a gerentes como a clientes; desde hacer una reserva a través de una aplicación, hasta la experimentación de un servicio mediante recursos tecnológicos de realidad aumentada. De ahí la importancia, necesidad y pertinencia de este libro, que alcanza con esta su tercera edición, primera en español.
Author : Publisher :Marcombo ISBN 13 : Total Pages :216 pages Book Rating :4./5 ( download)
Download or read book written by and published by Marcombo. This book was released on with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Human-Computer Interaction by : Vanessa Agredo-Delgado
Download or read book Human-Computer Interaction written by Vanessa Agredo-Delgado and published by Springer Nature. This book was released on 2023-01-21 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th Iberoamerican Workshop on Human-Computer Interaction, HCI-COLLAB 2022, which took place in Havana, Cuba, in October 2022. The 15 full papers presented in this volume were carefully reviewed and selected from 53 submissions. The papers deal with topics such as emotional interfaces, usability, video games, computational thinking, collaborative systems, IoT, software engineering, ICT in education, augmented and mixed virtual reality for education, gamification, emotional interfaces, adaptive instructional systems, accessibility, use of video games in education, artificial intelligence in HCI and infotainment, among others.
Book Synopsis Emerging Research in Intelligent Systems by : Miguel Botto-Tobar
Download or read book Emerging Research in Intelligent Systems written by Miguel Botto-Tobar and published by Springer Nature. This book was released on 2022-02-02 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the XVI Multidisciplinary International Congress on Science and Technology (CIT 2021), held in Quito, Ecuador, on June 14–18, 2021, proudly organized by Universidad de las Fuerzas Armadas ESPE in collaboration with GDEON. CIT is an international event with a multidisciplinary approach that promotes the dissemination of advances in science and technology research through the presentation of keynote conferences. In CIT, theoretical, technical, or application works that are research products are presented to discuss and debate ideas, experiences, and challenges. Presenting high-quality, peer-reviewed papers, the book discusses the following topics: Artificial Intelligence Computational Modeling Data Communications Defense Engineering Innovation, Technology, and Society Managing Technology & Sustained Innovation, and Business Development Security and Cryptography Software Engineering
Book Synopsis Desarrollo de aplicaciones móviles para Android con Kodular by : Axel Daniel Saldívar Zaldivar
Download or read book Desarrollo de aplicaciones móviles para Android con Kodular written by Axel Daniel Saldívar Zaldivar and published by Ra-Ma Editorial. This book was released on 2024-02-14 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kodular es un entorno de programación que facilita el diseño de aplicaciones Android utilizando bloques visuales. Este libro te enseñará a desarrollar aplicaciones móviles, robustas, completas, visualmente atractivas, que puedan intercambiar información con un servidor web y sobre todo funcional y eficiente y lo mejor ¡sin saber nada de programación! Y no solo eso, también aprenderemos a crear MockUp o prototipos de diseño, con el fin de darles la mejor apariencia posible a nuestras aplicaciones. Las explicaciones son sencillas y prácticas trabajando directamente sobre 3 proyectos para que todos los conceptos y definiciones que se van a tratar queden claros como el agua. Los proyectos son una aplicación que trabajará en el dispositivo móvil y otras dos con información almacenada en la web, a la cual se puede acceder desde cualquier parte del mundo. El libro contiene material adicional que podrá descargar accediendo a la ficha del libro en www.ra-ma.es.
Book Synopsis CURSO COMPLETO DE PROGRAMACIÓN DE APLICACIONES PARA ANDROID E IOS by : Marcel Souza
Download or read book CURSO COMPLETO DE PROGRAMACIÓN DE APLICACIONES PARA ANDROID E IOS written by Marcel Souza and published by Gavea. This book was released on with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: El libro "Curso Completo de Programación de Aplicaciones para Android e iOS" es una obra completa e imprescindible para aquellos que desean sumergirse en el emocionante mundo del desarrollo de aplicaciones móviles. Escrito por expertos experimentados en programación de aplicaciones, esta obra es una guía integral que aborda todos los aspectos cruciales del desarrollo para las dos principales plataformas móviles: Android e iOS. Con un enfoque práctico y paso a paso, el libro parte desde cero, adaptándose tanto a principiantes como a desarrolladores intermedios, ofreciendo una base sólida en programación móvil. Los lectores aprenderán a crear aplicaciones para dispositivos Android e iOS, desde la configuración del entorno de desarrollo hasta la implementación de funcionalidades avanzadas. El libro incluye temas como la introducción a los lenguajes de programación Java (para Android) y Swift (para iOS), el uso de IDEs populares como Android Studio y Xcode, además de explicar los conceptos fundamentales de diseño de UI/UX, almacenamiento de datos, integración de API y mucho más. Con ejemplos prácticos, ejercicios y proyectos para consolidar el aprendizaje, los lectores podrán desarrollar sus propias aplicaciones móviles de manera efectiva. Además, el libro también aborda las mejores prácticas de desarrollo, consejos de optimización de rendimiento y cómo publicar las aplicaciones en las respectivas tiendas de aplicaciones, convirtiéndolo en una referencia completa para aspirantes a desarrolladores móviles. "Curso Completo de Programación de Aplicaciones para Android e iOS" es una guía valiosa y completa que permitirá a los lectores embarcarse en un emocionante viaje de aprendizaje, capacitándolos para crear aplicaciones móviles de alta calidad para las plataformas más populares del mundo. Ya sea que sea un principiante en la programación o un programador experimentado que desee adentrarse en el desarrollo móvil, este libro es una fuente indispensable de conocimientos y habilidades.
Book Synopsis Innovation and Research by : Miguel Botto-Tobar
Download or read book Innovation and Research written by Miguel Botto-Tobar and published by Springer Nature. This book was released on 2020-11-21 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 1st International Congress on Innovation and Research – A Driving Force for Socio-Econo-Technological Development (CI3 2020). CI3 was held on June 18–19, 2020. It was organized by the Instituto Tecnológico Superior Rumiñahui and GDEON, in co-organization with Higher Institutes: Libertad, Bolivariano, Vida Nueva, Espíritu Santo, Sudamericano Loja, Central Técnico and sponsored by the Universidad Nacional Mayor de San Marcos (Perú), the Federal University of Goiás (Brazil) and HOSTOS—Community University of New York (USA). CI3 aims to promote the development of research activities in Higher Education Institutions and the relationship between the productive and scientific sector of Ecuador, supporting the fulfilment of the National Development Plan “Toda una vida 2017-2021”.
Book Synopsis Una Guía para Emprendedores Jóvenes, Éxito en México, Productos Digitales con Identidad Mexicana by : Isaac Medina
Download or read book Una Guía para Emprendedores Jóvenes, Éxito en México, Productos Digitales con Identidad Mexicana written by Isaac Medina and published by KNI Publishing Inc. This book was released on 2024-04-03 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Una Guía para Jóvenes, tener Éxito en México, con Productos Digitales con Identidad Mexicana" es una guía completa y detallada diseñada específicamente para jóvenes emprendedores que desean aventurarse en el emocionante mundo de los productos digitales con una perspectiva única y auténtica que celebre y promueva la identidad mexicana. Este eBook es único y valioso porque ofrece una combinación equilibrada de teoría, práctica, ejemplos inspiradores, consejos prácticos y herramientas útiles que te guiarán paso a paso en el emocionante y desafiante viaje de emprender y triunfar en el mundo de los productos digitales con una perspectiva y enfoque auténtico y distintivo que celebra y promueve la identidad, cultura y estilo de México. ¡No Esperes Más, Emprende Tu Camino hacia el Éxito Digital Hoy Mismo! Si estás listo para embarcarte en este emocionante viaje hacia el éxito digital y transformar tus pasiones, ideas y visiones en productos digitales innovadores, rentables y significativos que resuenen con tu audiencia y reflejen la rica cultura, historia y estilo de México, ¡no esperes más y obtén tu copia de "Una Guía para Emprendedores Jóvenes, Éxito en México, Productos Digitales con Identidad Mexicana" hoy mismo! Empieza a leer, aprender, crear, innovar, colaborar, crecer, escalar y triunfar con pasión, determinación y creatividad, y descubre cómo puedes hacer una diferencia positiva y duradera en el mundo digital y la sociedad a través de productos digitales auténticos, valiosos y enriquecedores que celebren, promuevan y fortalezcan la identidad, cultura y estilo de México. ¡Únete a la comunidad de emprendedores jóvenes y visionarios que están transformando el mundo digital con pasión, cultura y estilo mexicano, y sé parte del movimiento de innovación, creatividad y éxito en México y más allá!
Book Synopsis Distributed Computing and Artificial Intelligence by : Sigeru Omatu
Download or read book Distributed Computing and Artificial Intelligence written by Sigeru Omatu and published by Springer Science & Business Media. This book was released on 2013-06-25 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry sector is essential to facilitate the development of systems that can meet the ever increasing demands of today's society. This edition of DCAI brings together past experience, current work, and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the Bioinformatics, Intelligent System and Educational Technology Research Group (http://bisite.usal.es/) of the University of Salamanca. The present edition was held in Salamanca, Spain, from 22nd to 24th May 2013.
Book Synopsis Trends and Applications in Software Engineering by : Jezreel Mejia
Download or read book Trends and Applications in Software Engineering written by Jezreel Mejia and published by Springer. This book was released on 2018-09-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers a selection of papers presented at the 2018 International Conference on Software Process Improvement (CIMPS 2018). CIMPS 2018 offered a global forum for researchers and practitioners to present and discuss the latest innovations, trends, findings, experiences and concerns in Software Engineering, embracing several aspects such as Software Processes, Security in Information and Communication Technology, and Big Data. Two of the conference’s main aims were to support the drive toward a holistic symbiosis of the academic world, society, industry, government and business community, and to promote the creation of networks by disseminating the results of recent research in order to align their needs. CIMPS 2018 was made possible by the support of the CIMAT A.C., CUCEI (Universidad de Guadalajara, México), AISTI (Associação Ibérica de Sistemas e Tecnologas de Informação), and ReCIBE (Revista electrónica de Computación, Informática, Biomédica y Electrónica).
Book Synopsis Advances in Tourism, Technology and Systems by : João Vidal Carvalho
Download or read book Advances in Tourism, Technology and Systems written by João Vidal Carvalho and published by Springer Nature. This book was released on 2023-10-04 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a collection of high-quality research papers presented at the International Conference on Tourism, Technology and Systems (ICOTTS 2022), held at University of Chile, Santiago de Chile, Chile, from 3 to 5 November 2022. The book is divided into two volumes, and it covers the areas of technology in tourism and the tourist experience, generations and technology in tourism, digital marketing applied to tourism and travel, mobile technologies applied to sustainable tourism, information technologies in tourism, digital transformation of tourism business, e-tourism and tourism 2.0, big data and management for travel and tourism, geotagging and tourist mobility, smart destinations, robotics in tourism, and information systems and technologies.
Book Synopsis Information Technology and Systems by : Álvaro Rocha
Download or read book Information Technology and Systems written by Álvaro Rocha and published by Springer Nature. This book was released on 2023-08-19 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is composed by the papers written in English and accepted for presentation and discussion at The 2023 International Conference on Information Technology & Systems (ICITS'23), held at Universidad Nacional de San Antonio Abad del Cusco, in Cusco, Peru, between the 24th and the 26th of April 2023. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modelling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education, and Media, Applied Technology and Communication.
Book Synopsis Practical Solar Tracking Automatic Solar Tracking Sun Tracking Автоматическое удержание Солнечная слежения ВС 太陽能自動跟踪太陽跟踪 by : Gerro Prinsloo
Download or read book Practical Solar Tracking Automatic Solar Tracking Sun Tracking Автоматическое удержание Солнечная слежения ВС 太陽能自動跟踪太陽跟踪 written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details Practical Solar Energy Harvesting, Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems using motorized automatic positioning concepts and control principles. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously. In general, the book may benefit solar research and solar energy applications in countries such as Africa, Mediterranean, Italy, Spain, Greece, USA, Mexico, South America, Brazilia, Argentina, Chili, India, Malaysia, Middle East, UAE, Russia, Japan and China. This book on practical automatic Solar-Tracking Sun-Tracking is in .PDF format and can easily be converted to the .EPUB .MOBI .AZW .ePub .FB2 .LIT .LRF .MOBI .PDB .PDF .TCR formats for smartphones and Kindle by using the ebook.online-convert.com facility. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller. В этой книге подробно Автоматическая Solar-Tracking, ВС-Tracking-Systems, Solar-трекеры и ВС Tracker Systems. Интеллектуальный автоматический солнечной слежения является устройством, которое ориентирует полезную нагрузку к солнцу. Такое программируемый компьютер на основе солнечной устройство слежения включает принципы солнечной слежения, солнечных систем слежения, а также микроконтроллер, микропроцессор и / или ПК на базе управления солнечной отслеживания ориентироваться солнечных отражателей, солнечные линзы, фотоэлектрические панели или другие оптические конфигурации к ВС Моторизованные космические кадры и кинематические системы обеспечения динамики движения и использовать приводной техники и готовится принципы, чтобы направить оптические конфигурации, такие как Манжен, параболических, конических или Кассегрена солнечных коллекторов энергии, чтобы лицом к солнцу и следовать за солнцем контур движения непрерывно. В обуздывать силу от солнца через солнечный трекер или практической солнечной системы слежения, системы возобновляемых контроля энергии автоматизации требуют автоматического солнечной отслеживания программного обеспечения и алгоритмов солнечные позиции для достижения динамического контроля движения с архитектуры автоматизации управления, печатных плат и аппаратных средств. На оси системы слежения ВС, таких как высота-азимут двойной оси или многоосевые солнечные системы трекер использовать алгоритм отслеживания солнце или трассировки лучей датчиков или программное обеспечение, чтобы обеспечить прохождение солнца по небу прослеживается с высокой точностью в автоматизированных приложений Солнечная Tracker , прямо через летнего солнцестояния, солнечного равноденствия и зимнего солнцестояния.Высокая точность позиции ВС калькулятор или положение солнца алгоритм это важный шаг в проектировании и строительстве автоматической системой солнечной слежения. 這本書詳細介紹了全自動太陽能跟踪,太陽跟踪系統的出現,太陽能跟踪器和太陽跟踪系統。智能全自動太陽能跟踪器是定向向著太陽的有效載荷設備。這種可編程計算機的太陽能跟踪裝置,包括太陽跟踪,太陽能跟踪系統,以及微控制器,微處理器和/或基於PC機的太陽跟踪控制,以定向太陽能反射器,太陽透鏡,光電板或其他光學配置朝向太陽的原理。機動空間框架和運動系統,確保運動動力學和採用的驅動技術和傳動原理引導光學配置,如曼金,拋物線,圓錐曲線,或卡塞格林式太陽能集熱器面向太陽,不斷跟隨太陽運動的輪廓。 從陽光透過太陽能跟踪器或實用的太陽能跟踪系統利用電力,可再生能源控制的自動化系統需要自動太陽跟踪軟件和太陽位置算法來實現控制與自動化架構,電路板和硬件的動態運動控制。上軸太陽跟踪系統,如高度,方位角雙軸或多軸太陽跟踪系統使用太陽跟踪算法或光線追踪傳感器或軟件,以確保通過天空中太陽的通道被跟踪的高精度的自動太陽跟踪器的應用,通過正確的夏至,春分太陽和冬至。一種高精度太陽位置計算器或太陽位置算法是這樣的自動太陽能跟踪系統的設計和施工中的重要一步。
Book Synopsis Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar automático de seguimiento solar by : Gerro Prinsloo
Download or read book Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar automático de seguimiento solar written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Solar Tracking Sun Tracking : This book details Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously (seguimiento solar y automatización, automatización seguidor solar, tracking solar e automação, automação seguidor solar, inseguimento solare, inseguitore solare, energia termica, sole seguito, posizionatore motorizzato) In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. The book also describes the use of satellite tracking software and mechanisms in solar tracking applications. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller.
Book Synopsis historias de developers by : Alberto de Vega Luna
Download or read book historias de developers written by Alberto de Vega Luna and published by Lulu.com. This book was released on 2013-02-22 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historias de developers contiene 26 capítulos de experiencias de developers que pueden ser muy útiles para los miembros de este colectivo, pero también para sus jefes, ya que se habla de temas como arquitectura, gestión del código, seguridad, testeo, depuración, motivación, comunicación, ... En resumen, muchas de las cosas que querrías saber cómo hacen otros developers.