Author : Swarna Gupta
Publisher : Packt Publishing Ltd
ISBN 13 : 1789808278
Total Pages : 322 pages
Book Rating : 4.7/5 (898 download)
Book Synopsis Deep Learning with R Cookbook by : Swarna Gupta
Download or read book Deep Learning with R Cookbook written by Swarna Gupta and published by Packt Publishing Ltd. This book was released on 2020-02-21 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackle the complex challenges faced while building end-to-end deep learning models using modern R libraries Key FeaturesUnderstand the intricacies of R deep learning packages to perform a range of deep learning tasksImplement deep learning techniques and algorithms for real-world use casesExplore various state-of-the-art techniques for fine-tuning neural network modelsBook Description Deep learning (DL) has evolved in recent years with developments such as generative adversarial networks (GANs), variational autoencoders (VAEs), and deep reinforcement learning. This book will get you up and running with R 3.5.x to help you implement DL techniques. The book starts with the various DL techniques that you can implement in your apps. A unique set of recipes will help you solve binomial and multinomial classification problems, and perform regression and hyperparameter optimization. To help you gain hands-on experience of concepts, the book features recipes for implementing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long short-term memory (LSTMs) networks, as well as sequence-to-sequence models and reinforcement learning. You’ll then learn about high-performance computation using GPUs, along with learning about parallel computation capabilities in R. Later, you’ll explore libraries, such as MXNet, that are designed for GPU computing and state-of-the-art DL. Finally, you’ll discover how to solve different problems in NLP, object detection, and action identification, before understanding how to use pre-trained models in DL apps. By the end of this book, you’ll have comprehensive knowledge of DL and DL packages, and be able to develop effective solutions for different DL problems. What you will learnWork with different datasets for image classification using CNNsApply transfer learning to solve complex computer vision problemsUse RNNs and their variants such as LSTMs and Gated Recurrent Units (GRUs) for sequence data generation and classificationImplement autoencoders for DL tasks such as dimensionality reduction, denoising, and image colorizationBuild deep generative models to create photorealistic images using GANs and VAEsUse MXNet to accelerate the training of DL models through distributed computingWho this book is for This deep learning book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to learn key tasks in deep learning domains using a recipe-based approach. A strong understanding of machine learning and working knowledge of the R programming language is mandatory.