Deep Learning Patterns and Practices

Download Deep Learning Patterns and Practices PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835667X
Total Pages : 755 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Patterns and Practices by : Andrew Ferlitsch

Download or read book Deep Learning Patterns and Practices written by Andrew Ferlitsch and published by Simon and Schuster. This book was released on 2021-10-12 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production. In Deep Learning Patterns and Practices you will learn: Internal functioning of modern convolutional neural networks Procedural reuse design pattern for CNN architectures Models for mobile and IoT devices Assembling large-scale model deployments Optimizing hyperparameter tuning Migrating a model to a production environment The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitsch’s work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new way: as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. You’ll build your skills and confidence with each interesting example. About the book Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. You’ll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, you’ll get tips for deploying, testing, and maintaining your projects. What's inside Modern convolutional neural networks Design pattern for CNN architectures Models for mobile and IoT devices Large-scale model deployments Examples for computer vision About the reader For machine learning engineers familiar with Python and deep learning. About the author Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations. Table of Contents PART 1 DEEP LEARNING FUNDAMENTALS 1 Designing modern machine learning 2 Deep neural networks 3 Convolutional and residual neural networks 4 Training fundamentals PART 2 BASIC DESIGN PATTERN 5 Procedural design pattern 6 Wide convolutional neural networks 7 Alternative connectivity patterns 8 Mobile convolutional neural networks 9 Autoencoders PART 3 WORKING WITH PIPELINES 10 Hyperparameter tuning 11 Transfer learning 12 Data distributions 13 Data pipeline 14 Training and deployment pipeline

Machine Learning Design Patterns

Download Machine Learning Design Patterns PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1098115759
Total Pages : 408 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Design Patterns by : Valliappa Lakshmanan

Download or read book Machine Learning Design Patterns written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2020-10-15 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly

Machine Learning for Edge Computing

Download Machine Learning for Edge Computing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000609235
Total Pages : 200 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Edge Computing by : Amitoj Singh

Download or read book Machine Learning for Edge Computing written by Amitoj Singh and published by CRC Press. This book was released on 2022-07-29 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it discusses how to build AI models, i.e., model training and inference, on edge. This book provides insights into this new inter-disciplinary field of edge computing from a broader vision and perspective. The authors discuss machine learning algorithms for edge computing as well as the future needs and potential of the technology. The authors also explain the core concepts, frameworks, patterns, and research roadmap, which offer the necessary background for potential future research programs in edge intelligence. The target audience of this book includes academics, research scholars, industrial experts, scientists, and postgraduate students who are working in the field of Internet of Things (IoT) or edge computing and would like to add machine learning to enhance the capabilities of their work. This book explores the following topics: Edge computing, hardware for edge computing AI, and edge virtualization techniques Edge intelligence and deep learning applications, training, and optimization Machine learning algorithms used for edge computing Reviews AI on IoT Discusses future edge computing needs Amitoj Singh is an Associate Professor at the School of Sciences of Emerging Technologies, Jagat Guru Nanak Dev Punjab State Open University, Punjab, India. Vinay Kukreja is a Professor at the Chitkara Institute of Engineering and Technology, Chitkara University, Punjab, India. Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Patterns, Predictions, and Actions: Foundations of Machine Learning

Download Patterns, Predictions, and Actions: Foundations of Machine Learning PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691233721
Total Pages : 321 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Patterns, Predictions, and Actions: Foundations of Machine Learning by : Moritz Hardt

Download or read book Patterns, Predictions, and Actions: Foundations of Machine Learning written by Moritz Hardt and published by Princeton University Press. This book was released on 2022-08-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Deep Learning with Python

Download Deep Learning with Python PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352046
Total Pages : 597 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Python by : Francois Chollet

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Distributed Machine Learning Patterns

Download Distributed Machine Learning Patterns PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354197
Total Pages : 375 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Distributed Machine Learning Patterns by : Yuan Tang

Download or read book Distributed Machine Learning Patterns written by Yuan Tang and published by Simon and Schuster. This book was released on 2024-01-30 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical patterns for scaling machine learning from your laptop to a distributed cluster. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. This book reveals best practice techniques and insider tips for tackling the challenges of scaling machine learning systems. In Distributed Machine Learning Patterns you will learn how to: Apply distributed systems patterns to build scalable and reliable machine learning projects Build ML pipelines with data ingestion, distributed training, model serving, and more Automate ML tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows Make trade-offs between different patterns and approaches Manage and monitor machine learning workloads at scale Inside Distributed Machine Learning Patterns you’ll learn to apply established distributed systems patterns to machine learning projects—plus explore cutting-edge new patterns created specifically for machine learning. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Hands-on projects and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. About the technology Deploying a machine learning application on a modern distributed system puts the spotlight on reliability, performance, security, and other operational concerns. In this in-depth guide, Yuan Tang, project lead of Argo and Kubeflow, shares patterns, examples, and hard-won insights on taking an ML model from a single device to a distributed cluster. About the book Distributed Machine Learning Patterns provides dozens of techniques for designing and deploying distributed machine learning systems. In it, you’ll learn patterns for distributed model training, managing unexpected failures, and dynamic model serving. You’ll appreciate the practical examples that accompany each pattern along with a full-scale project that implements distributed model training and inference with autoscaling on Kubernetes. What's inside Data ingestion, distributed training, model serving, and more Automating Kubernetes and TensorFlow with Kubeflow and Argo Workflows Manage and monitor workloads at scale About the reader For data analysts and engineers familiar with the basics of machine learning, Bash, Python, and Docker. About the author Yuan Tang is a project lead of Argo and Kubeflow, maintainer of TensorFlow and XGBoost, and author of numerous open source projects. Table of Contents PART 1 BASIC CONCEPTS AND BACKGROUND 1 Introduction to distributed machine learning systems PART 2 PATTERNS OF DISTRIBUTED MACHINE LEARNING SYSTEMS 2 Data ingestion patterns 3 Distributed training patterns 4 Model serving patterns 5 Workflow patterns 6 Operation patterns PART 3 BUILDING A DISTRIBUTED MACHINE LEARNING WORKFLOW 7 Project overview and system architecture 8 Overview of relevant technologies 9 A complete implementation

Scalable and Distributed Machine Learning and Deep Learning Patterns

Download Scalable and Distributed Machine Learning and Deep Learning Patterns PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1668498057
Total Pages : 315 pages
Book Rating : 4.6/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Scalable and Distributed Machine Learning and Deep Learning Patterns by : Thomas, J. Joshua

Download or read book Scalable and Distributed Machine Learning and Deep Learning Patterns written by Thomas, J. Joshua and published by IGI Global. This book was released on 2023-08-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work. This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs.

Deep Learning with R

Download Deep Learning with R PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351635
Total Pages : 528 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with R by : François Chollet

Download or read book Deep Learning with R written by François Chollet and published by Simon and Schuster. This book was released on 2018-01-22 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Continue your journey into the world of deep learning with Deep Learning with R in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/deep-​learning-with-r-in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors François Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions

Pattern Recognition and Machine Learning

Download Pattern Recognition and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781493938438
Total Pages : 0 pages
Book Rating : 4.9/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491914211
Total Pages : 532 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Josh Patterson

Download or read book Deep Learning written by Josh Patterson and published by "O'Reilly Media, Inc.". This book was released on 2017-07-28 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop

Dive Into Deep Learning

Download Dive Into Deep Learning PDF Online Free

Author :
Publisher : Corwin Press
ISBN 13 : 1544385404
Total Pages : 297 pages
Book Rating : 4.5/5 (443 download)

DOWNLOAD NOW!


Book Synopsis Dive Into Deep Learning by : Joanne Quinn

Download or read book Dive Into Deep Learning written by Joanne Quinn and published by Corwin Press. This book was released on 2019-07-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.

Deep Learning with PyTorch

Download Deep Learning with PyTorch PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354073
Total Pages : 518 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with PyTorch by : Luca Pietro Giovanni Antiga

Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Human-in-the-Loop Machine Learning

Download Human-in-the-Loop Machine Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296740
Total Pages : 422 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Human-in-the-Loop Machine Learning by : Robert Munro

Download or read book Human-in-the-Loop Machine Learning written by Robert Munro and published by Simon and Schuster. This book was released on 2021-07-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

Deep Learning with TensorFlow 2 and Keras

Download Deep Learning with TensorFlow 2 and Keras PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838827722
Total Pages : 647 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with TensorFlow 2 and Keras by : Antonio Gulli

Download or read book Deep Learning with TensorFlow 2 and Keras written by Antonio Gulli and published by Packt Publishing Ltd. This book was released on 2019-12-27 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.