Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Data Science For Effective Healthcare Systems
Download Data Science For Effective Healthcare Systems full books in PDF, epub, and Kindle. Read online Data Science For Effective Healthcare Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Handbook of Research on Data Science for Effective Healthcare Practice and Administration by : Noughabi, Elham Akhond Zadeh
Download or read book Handbook of Research on Data Science for Effective Healthcare Practice and Administration written by Noughabi, Elham Akhond Zadeh and published by IGI Global. This book was released on 2017-07-20 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.
Book Synopsis Data Science for Healthcare by : Sergio Consoli
Download or read book Data Science for Healthcare written by Sergio Consoli and published by Springer. This book was released on 2019-02-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.
Book Synopsis Data Science for Effective Healthcare Systems by : Hari Singh
Download or read book Data Science for Effective Healthcare Systems written by Hari Singh and published by CRC Press. This book was released on 2022-07-27 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science for Effective Healthcare Systems has a prime focus on the importance of data science in the healthcare domain. Various applications of data science in the health care domain have been studied to find possible solutions. In this period of COVID-19 pandemic data science and allied areas plays a vital role to deal with various aspect of health care. Image processing, detection & prevention from COVID-19 virus, drug discovery, early prediction, and prevention of diseases are some thrust areas where data science has proven to be indispensable. Key Features: The book offers comprehensive coverage of the most essential topics, including: Big Data Analytics, Applications & Challenges in Healthcare Descriptive, Predictive and Prescriptive Analytics in Healthcare Artificial Intelligence, Machine Learning, Deep Learning and IoT in Healthcare Data Science in Covid-19, Diabetes, Coronary Heart Diseases, Breast Cancer, Brain Tumor The aim of this book is also to provide the future scope of these technologies in the health care domain. Last but not the least, this book will surely benefit research scholar, persons associated with healthcare, faculty, research organizations, and students to get insights into these emerging technologies in the healthcare domain.
Book Synopsis Leveraging Data Science for Global Health by : Leo Anthony Celi
Download or read book Leveraging Data Science for Global Health written by Leo Anthony Celi and published by Springer Nature. This book was released on 2020-07-31 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Book Synopsis Data Analytics in Biomedical Engineering and Healthcare by : Kun Chang Lee
Download or read book Data Analytics in Biomedical Engineering and Healthcare written by Kun Chang Lee and published by Academic Press. This book was released on 2020-10-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
Book Synopsis Demystifying Big Data and Machine Learning for Healthcare by : Prashant Natarajan
Download or read book Demystifying Big Data and Machine Learning for Healthcare written by Prashant Natarajan and published by CRC Press. This book was released on 2017-02-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Book Synopsis Practical Predictive Analytics and Decisioning Systems for Medicine by : Gary D. Miner
Download or read book Practical Predictive Analytics and Decisioning Systems for Medicine written by Gary D. Miner and published by Academic Press. This book was released on 2014-09-27 with total page 1111 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner.Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. - Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research - Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations - Demonstrates methods to help sort through data to make better observations and allow you to make better predictions
Book Synopsis Healthcare Data Analytics by : Chandan K. Reddy
Download or read book Healthcare Data Analytics written by Chandan K. Reddy and published by CRC Press. This book was released on 2015-06-23 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Book Synopsis How Data Science Is Transforming Health Care by : Tim O'Reilly
Download or read book How Data Science Is Transforming Health Care written by Tim O'Reilly and published by "O'Reilly Media, Inc.". This book was released on 2012-08-24 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the early days of the 20th century, department store magnate JohnWanamaker famously said, "I know that half of my advertising doesn'twork. The problem is that I don't know which half." That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient.
Book Synopsis Knowledge Modelling and Big Data Analytics in Healthcare by : Mayuri Mehta
Download or read book Knowledge Modelling and Big Data Analytics in Healthcare written by Mayuri Mehta and published by CRC Press. This book was released on 2021-12-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.
Book Synopsis The Learning Healthcare System by : Institute of Medicine
Download or read book The Learning Healthcare System written by Institute of Medicine and published by National Academies Press. This book was released on 2007-06-01 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: As our nation enters a new era of medical science that offers the real prospect of personalized health care, we will be confronted by an increasingly complex array of health care options and decisions. The Learning Healthcare System considers how health care is structured to develop and to apply evidence-from health profession training and infrastructure development to advances in research methodology, patient engagement, payment schemes, and measurement-and highlights opportunities for the creation of a sustainable learning health care system that gets the right care to people when they need it and then captures the results for improvement. This book will be of primary interest to hospital and insurance industry administrators, health care providers, those who train and educate health workers, researchers, and policymakers. The Learning Healthcare System is the first in a series that will focus on issues important to improving the development and application of evidence in health care decision making. The Roundtable on Evidence-Based Medicine serves as a neutral venue for cooperative work among key stakeholders on several dimensions: to help transform the availability and use of the best evidence for the collaborative health care choices of each patient and provider; to drive the process of discovery as a natural outgrowth of patient care; and, ultimately, to ensure innovation, quality, safety, and value in health care.
Book Synopsis Healthcare Business Intelligence, + Website by : Laura Madsen
Download or read book Healthcare Business Intelligence, + Website written by Laura Madsen and published by John Wiley & Sons. This book was released on 2012-09-04 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid business intelligence guidance uniquely designed for healthcare organizations Increasing regulatory pressures on healthcare organizations have created a national conversation on data, reporting and analytics in healthcare. Behind the scenes, business intelligence (BI) and data warehousing (DW) capabilities are key drivers that empower these functions. Healthcare Business Intelligence is designed as a guidebook for healthcare organizations dipping their toes into the areas of business intelligence and data warehousing. This volume is essential in how a BI capability can ease the increasing regulatory reporting pressures on all healthcare organizations. Explores the five tenets of healthcare business intelligence Offers tips for creating a BI team Identifies what healthcare organizations should focus on first Shows you how to gain support for your BI program Provides tools and techniques that will jump start your BI Program Explains how to market and maintain your BI Program The risk associated with doing BI/DW wrong is high, and failures are well documented. Healthcare Business Intelligence helps you get it right, with expert guidance on getting your BI program started and successfully keep it going.
Book Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben
Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Book Synopsis Semantic Web for Effective Healthcare Systems by : Vishal Jain
Download or read book Semantic Web for Effective Healthcare Systems written by Vishal Jain and published by John Wiley & Sons. This book was released on 2021-11-12 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: SEMANTIC WEB FOR EFFECTIVE HEALTHCARE SYSTEMS The book summarizes the trends and current research advances in web semantics, delineating the existing tools, techniques, methodologies, and research solutions Semantic Web technologies have the opportunity to transform the way healthcare providers utilize technology to gain insights and knowledge from their data and make treatment decisions. Both Big Data and Semantic Web technologies can complement each other to address the challenges and add intelligence to healthcare management systems. The aim of this book is to analyze the current status on how the semantic web is used to solve health data integration and interoperability problems, and how it provides advanced data linking capabilities that can improve search and retrieval of medical data. Chapters analyze the tools and approaches to semantic health data analysis and knowledge discovery. The book discusses the role of semantic technologies in extracting and transforming healthcare data before storing it in repositories. It also discusses different approaches for integrating heterogeneous healthcare data. This innovative book offers: The first of its kind and highlights only the ontology driven information retrieval mechanisms and techniques being applied to healthcare as well as clinical information systems; Presents a comprehensive examination of the emerging research in areas of the semantic web; Discusses studies on new research areas including ontological engineering, semantic annotation and semantic sentiment analysis; Helps readers understand key concepts in semantic web applications for the biomedical engineering and healthcare fields; Includes coverage of key application areas of the semantic web. Audience: Researchers and graduate students in computer science, biomedical engineering, electronic and software engineering, as well as industry scientific researchers, clinicians, and systems managers in biomedical fields.
Author :Information Resources Management Association Publisher :Medical Information Science Reference ISBN 13 :9781799812043 Total Pages :2250 pages Book Rating :4.8/5 (12 download)
Book Synopsis Data Analytics in Medicine by : Information Resources Management Association
Download or read book Data Analytics in Medicine written by Information Resources Management Association and published by Medical Information Science Reference. This book was released on 2019-11-18 with total page 2250 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--
Book Synopsis Internet of Things and Big Data Technologies for Next Generation Healthcare by : Chintan Bhatt
Download or read book Internet of Things and Big Data Technologies for Next Generation Healthcare written by Chintan Bhatt and published by Springer. This book was released on 2017-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.