Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Data Mining Guidance Real World Application Templates Documents And Examples Of The Use Of Data Mining In The Public Domain Plus Free Access To
Download Data Mining Guidance Real World Application Templates Documents And Examples Of The Use Of Data Mining In The Public Domain Plus Free Access To full books in PDF, epub, and Kindle. Read online Data Mining Guidance Real World Application Templates Documents And Examples Of The Use Of Data Mining In The Public Domain Plus Free Access To ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mining of Massive Datasets by : Jure Leskovec
Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Book Synopsis Data Mining with Rattle and R by : Graham Williams
Download or read book Data Mining with Rattle and R written by Graham Williams and published by Springer Science & Business Media. This book was released on 2011-08-04 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.
Book Synopsis Data Mining the Web by : Zdravko Markov
Download or read book Data Mining the Web written by Zdravko Markov and published by John Wiley & Sons. This book was released on 2007-04-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).
Book Synopsis Data Preparation for Data Mining by : Dorian Pyle
Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Book Synopsis Data Mining and Data Warehousing by : Parteek Bhatia
Download or read book Data Mining and Data Warehousing written by Parteek Bhatia and published by Cambridge University Press. This book was released on 2019-06-27 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.
Book Synopsis Data Mining and Predictive Analytics by : Daniel T. Larose
Download or read book Data Mining and Predictive Analytics written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2015-02-19 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Book Synopsis Learning Data Mining with Python by : Robert Layton
Download or read book Learning Data Mining with Python written by Robert Layton and published by Packt Publishing Ltd. This book was released on 2015-07-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.
Book Synopsis Principles of Data Mining by : David J. Hand
Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han
Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Book Synopsis Bulletin of the Atomic Scientists by :
Download or read book Bulletin of the Atomic Scientists written by and published by . This book was released on 1955-04 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.
Download or read book Data Mining with R written by Luis Torgo and published by CRC Press. This book was released on 2016-11-30 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.
Book Synopsis R and Data Mining by : Yanchang Zhao
Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work
Book Synopsis Frontiers in Massive Data Analysis by : National Research Council
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Book Synopsis Social Science Research by : Anol Bhattacherjee
Download or read book Social Science Research written by Anol Bhattacherjee and published by CreateSpace. This book was released on 2012-04-01 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
Download or read book Data Mining written by Florin Gorunescu and published by Springer Science & Business Media. This book was released on 2011-03-10 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The knowledge discovery process is as old as Homo sapiens. Until some time ago this process was solely based on the ‘natural personal' computer provided by Mother Nature. Fortunately, in recent decades the problem has begun to be solved based on the development of the Data mining technology, aided by the huge computational power of the 'artificial' computers. Digging intelligently in different large databases, data mining aims to extract implicit, previously unknown and potentially useful information from data, since “knowledge is power”. The goal of this book is to provide, in a friendly way, both theoretical concepts and, especially, practical techniques of this exciting field, ready to be applied in real-world situations. Accordingly, it is meant for all those who wish to learn how to explore and analysis of large quantities of data in order to discover the hidden nugget of information.
Book Synopsis AI and education by : Miao, Fengchun
Download or read book AI and education written by Miao, Fengchun and published by UNESCO Publishing. This book was released on 2021-04-08 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]
Book Synopsis Bulletin of the Atomic Scientists by :
Download or read book Bulletin of the Atomic Scientists written by and published by . This book was released on 1970-12 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.